

FIFTY YEARS IN CHEMICAL DRUG RESEARCH

Miroslav PROTIVA

Research Institute for Pharmacy and Biochemistry, 130 60 Prague 3

1 Introduction	2503
2 Aliphatic Compounds	2506
3 Alicyclic Compounds	2509
4 Aromatic Compounds	2512
4.1 Aryl Ethers, Sulfides, Amines etc	2512
4.2 Arylalkyl Derivatives	2514
4.2.1 Monoarylalkyl Derivatives	2514
4.2.2 Diarylalkyl Derivatives	2518
4.2.2.1 Benzhydryl Derivatives	2518
4.2.2.2 1,1-Diarylethyl Derivatives	2522
4.2.2.3 Further Diaryl- and Polyaryl-alkyl Derivatives	2524
4.3 Arylcycloalkane and Aralkylcycloalkane Derivatives	2526
4.4 Condensed Aromatic Compounds	2529
4.4.1 Indane and Indene Derivatives	2529
4.4.2 Naphthalene Derivatives	2530
4.4.3 Tetraline Derivatives	2530
4.4.4 6,7,8,9-Tetrahydro-5H-benzocycloheptenes	2531
4.4.5 Tricyclic Condensed Aromatic Compounds	2532
4.4.5.1 s-Hydridacenes	2532
4.4.5.2 Acenaphthene and Fluorene Derivatives	2533
4.4.5.3 Anthracene and Phenanthrene Derivatives	2534
4.4.5.4 Dibenzo[<i>a,d</i>]cycloheptene Derivatives	2535
4.4.5.5 Bridged Aromatic Tricycles	2536
4.4.6 Tetracyclic Condensed Aromatic Compounds	2537
4.4.6.1 11H-Benzo[<i>a</i>]fluorenes	2537
4.4.6.2 Direction to Hydrocyclopenta[<i>e</i>]phenanthrenes	2537
5 Heterocyclic Compounds	2538
5.1 Heteromonocyclic Compounds	2538
5.1.1 Furan, Thiophene, Pyrrole, Thiazole and Pyrazole Derivatives	2538
5.1.2 Imidazole Derivatives	2539
5.1.3 Tetrahydrothiopyran Derivatives	2540
5.1.4 Pyridine Derivatives	2541
5.1.5 Piperidine Derivatives	2542
5.1.6 Morpholine Derivatives	2544
5.1.7 Pyrimidine Derivatives	2544
5.1.8 Piperazine Derivatives	2544
5.2 Heterobicyclic Compounds	2546
5.2.1 2-Azabicyclo[3.3.0]octanes and 8-Azabicyclo[4.3.0]nonanes	2546
5.2.2 Benzo[<i>b</i>]thiophene and Indole Derivatives	2546
5.2.3 2,1-Benzisoxazole and Benzimidazole Derivatives	2547
5.2.4 Pyrrolopyridines and Pyridoimidazoles	2548

5.2.5 2,8-Diazaspiro[4.5]decane and 2-Azabicyclo[3.3.1]nonane Derivatives	2548
5.2.6 1,4-Benzodioxan, 2-Benzothiopyran, Quinoline and Isoquinoline Derivatives	2548
5.2.7 Benzoxepin, Benzothiepin and Benzoselenepin Derivatives	2549
5.2.8 Benzazepine Derivatives	2550
5.2.9 1,4-Benzodiazepines	2550
5.3 Heterotricyclic Compounds	2551
5.3.1 Heterotricyclic Compounds with Five- and Six-Membered Rings	2551
5.3.1.1 Dibenzothiophenes and Thienobenzothiopyrans	2551
5.3.1.2 Carbazole, Cyclopent[g]isoquinoline and Benz[c,d]indole Derivatives	2551
5.3.1.3 8-Carboline Derivatives	2552
5.3.2 Heterotricyclic Compounds with Six-Membered Rings	2552
5.3.2.1 Xanthene, Thioxanthene and Selenoxanthene Derivatives	2552
5.3.2.2 Acridine, Benz[d,e]isoquinoline, Julolidine and Methanobenzazocine Derivatives	2554
5.3.2.3 Thianthrene, Phenothiazine, 11 <i>H</i> -Pyrido[2,3- <i>b</i>]quinazoline and [1]Benzothiopyrano[3,2- <i>d</i>]pyrimidine Derivatives	2555
5.3.3 Heterotricyclic Compounds with Seven-Membered Rings	2556
5.3.3.1 Benzocycloheptathiophenes	2556
5.3.3.2 Dibenzoxepin Derivatives	2557
5.3.3.3 6,11-Dihydrodibenzo[<i>b,e</i>]thiepin Derivatives	2557
5.3.3.4 Dibenzo[<i>b,f</i>]thiepin Derivatives	2564
5.3.3.5 Dibenzo[<i>c,e</i>]thiepins, Dibenzoselenepins and Dibenzo[<i>b,f</i>]silepins	2586
5.3.3.6 Morphanthridine, Dibenz[<i>b,f</i>]azepine and 3,7-Methano-1 <i>H</i> -2-benzazonine Derivatives	2586
5.3.3.7 11 <i>H</i> -Dibenzo[<i>b,e</i>]-1,4-dioxepin, 6 <i>H</i> -Dibenzo[<i>b,e</i>]-1,4-oxathiepin, 11 <i>H</i> -Dibenzo[<i>b,f</i>]-1,4-oxathiepin and 11 <i>H</i> -Dibenzo[<i>b,e</i>]-1,4-dithiepin Derivatives	2587
5.3.3.8 Dibenzo[<i>b,f</i>]-1,4-oxazepine, Dibenzo[<i>b,f</i>]-1,4-thiazepine and 5 <i>H</i> -Dibenzo[<i>b,e</i>]-1,4-diazepine Derivatives	2589
5.3.3.9 Thieno[2,3- <i>c</i>]-2-benzothiepin Derivatives	2589
5.3.3.10 Further Thienobenzothiepins	2591
5.3.3.11 [1]Benzothiepino[2,3- <i>b</i>]pyridines and Further Heterocycles with a Seven-Membered Central Ring	2592
5.3.3.12 Heterocycles with Angular Annelation and a Seven-Membered Central Ring	2593
5.3.4 Heterotricyclic Compounds with Eight-Membered Rings	2594
5.4 Heterotetracyclic Compounds	2595
5.4.1 Annulated Thioxanthene and Dibenzothiepin Derivatives	2595
5.4.2 Berbine and Berbane Derivatives	2595
5.4.3 Remaining Heterotetracyclic Compounds	2597
5.5 Heteropentacyclic Compounds	2597
5.5.1 [1]Benzothiepino[2,3- <i>ed</i>]pyrido[2,1- <i>a</i>]isoquinoline Derivatives	2597
5.5.2 2 <i>H</i> -Benz[<i>g</i>][1]benzothieno[2,3- <i>a</i>]quinolizine Derivatives	2598
5.5.3 Yohimbane Derivatives and Reserpoids	2598
5.6 Heteropolycyclic Compounds	2603
6 Index of Nonchemical Names of the Original Products	2603
7 Structures of Compounds Presented in this Review	2608
8 References	2713

The presented review is a survey of the efforts of the author and his team (3rd Department of organic synthesis at the Research Institute for Pharmacy and Biochemistry in Prague) during the last fifty years to synthesize pharmacologically active original compounds and to develop – with the help of colleagues in all of the necessary biological lines – therapeutically useful drugs. The approach used consisted mostly in manipulations with structures of the known active molecules and in the screening of compounds originating from systematic chemical processing (functionalization) of some neglected pharmacophores (or carrier systems). The work included very diversified types of organic compounds in which the presence of amino group was mostly the common denominator. From the pharmacological point of view, the work was concentrated to agents acting at the vegetative and central nervous system. In addition to finding some interesting and unexpected types of organic reactions and to contributing to the knowledge of structure – activity relationships in some structural fields, the result of the work were twenty six original drugs which found practical use and the place on the pharmaceutical market, further twenty three original substances reaching the stage of clinical trials, and finally seventeen compounds which were the object of detailed preclinical tests but were dropped on the basis of various reasons. The most important results were the antihistamine agents 208, 213, 632 ($R = 2\text{-CH}_3$) and 903 ($R = \text{H}$), two spasmytic sulfonium salts (260, 264), the antidepressant prothiadene (632, $R = \text{H}$) which found a practically worldwide use, and the neuroleptic agents 737 ($R = 8\text{-Cl}$), 756 ($R = 8\text{-SCH}_3$), 771, and finally 755 ($R = 3\text{-F-8-CH(CH}_3)_2$), being not yet marketed.

1 INTRODUCTION

My first contact with chemical drug research goes back to the end of 1939 when – after the forced closure of the Czech universities – I found refuge in the pharmaceutical laboratory of Dr Z. Klan in Prague. It was the period of the antibacterial sulfonamides and so the first task was to help under the guidance of Mr Antonín Pártl to solve the problem of an alternative synthesis of sulfacetamide (1). We started from di(4-nitrophenyl) disulfide and wanted to proceed via N-acetyl-4-nitrobenzenesulfonamide. The work did not lead to a practical synthesis of 1; nevertheless this experience transformed me to an embryo of a drug chemist. After two years intermission (work in the analytical laboratory of a cement factory), I gladly joined again Mr A. Pártl who became in the meantime technical director of a more important pharmaceutical factory REMED in Prague. As a personal technician-chemist of Mr Pártl, I carried out syntheses of samples of various substances which could be of interest for the company. In 1944 I elaborated a modified synthesis of sulfaguanidine (2) (ref.³) which was manufactured for some time under the name of Enterina[®] (cf. ref.⁴). The first original contribution was the synthesis of an antispasmodic derivative of benzilic acid (will be described at the appropriate place), marketed for some time as Prospasmin[®] (ref.¹).

This introduction should not be a biographical treatise but at least a sketch in this line is necessary. After the war, I finished the studies in chemistry at the Technical University in Prague (1946) and spent six months of the year 1947 in the laboratory of Prof. Vlado Prelog at the Federal Technical University in Zurich. From 1951 to 1986 I headed a department of organic synthesis of the newly established Research Institute for Pharmacy and Biochemistry in Prague which was the central research institute of the Czechoslovak pharmaceutical industry (SPOFA). In this position, I formulated most of the research projects, followed the daily progress of the experiments and summarized the results in the form of publications and patent applications. All of my co-workers, who carried out the experiments, sometimes on the basis of their own synthetic concepts, are named (mostly repeatedly) in the list of references. The most important of them, who were connected with our team for decades or for the time of their whole professional career, have to be mentioned here: Jiří Jílek, Miroslav Rajšner, Karel Šindelář, Zdeněk Vejdělek, Vladimír Valenta, and Zdeněk Polívka. Only for several years with us but important in some lines were the following: Miloš Borovička (antihistaminics, ganglionic blockers), Ludvík Novák (antihistaminics, reserpoids), Edita Adlerová (antispasmodics), Věra Seidlová (antidepressants), Otto Exner (sulfonium salts), Jiří Pliml (pyridine derivatives), Vladimír Hach (local anaesthetics), Ivan Ernest and Ivo Jirkovský (reserpoids), Karel Pelz and Václav Bártl (neuroleptics). Very helpful technicians for long years with us were Josef Pomykáček, Zdeněk Šedivý, Marta Hrubantová, Marie Vlková, František Mikšík, and Luboš Tůma.

The work of the team consisted in the synthesis of series of new compounds, their proper characterization (in the first years only the usual physical constants and analyses and then increasing use of spectral characterization starting with UV and IR and since 1965 MS, ^1H NMR and more recently ^{13}C NMR (important co-operation with E. Knobloch, B. Kakáč, E. Svátek, M. Ryska, J. Holubek, and M. Buděšínský)). Chromatographic methods were commonly used for the characterization (paper chromatography, TLC, GC) and especially for separation of mixtures (column chromatography). Identification of unexpected products or of minor by-products became inseparable constituent of the work – even when the goal was the preparation of identified compounds for pharmacological testing. The laboratory techniques in organic chemistry were too important for the work which brought me to contributing to monographical treatises in this line^{78,96,189}.

The topic of the work was the chemistry of drugs in general. The Czech literature after the war in this area was completely lacking; the gap was filled at least partly by a monograph on synthetic drugs written together with the late Dr Zdeněk Buděšínský^{89,158}. The strategy of designing new structures of potential drugs used mainly two approaches: (i) Manipulation with structures of known active compounds (natural products, active compounds discovered here or by others) by modifications according to the lines exemplified in ref.³⁸. Serendipity and systematic pharmacological screening

played an important role and led in one case to the discovery of our own prototype^{212,219,357}. The result was a good basis for systematic research work lasting for fifteen years. (ii) Use of some cyclic (mostly bicyclic and tricyclic systems) as pharmacophores or carrier systems, their functionalization in various positions, especially by introducing amino groups, carboxyl, hydroxyl or thiol groups and by their further derivatization by aminoalkylation to obtain aminoalkylamino, aminoalkoxycarbonyl, aminoalkoxy and aminoalkylthio side-chains. Also the C-aminoalkylation by the Grignard reaction or by the direct attack at activated carbon atoms played a role. The balance between the lipophilic and hydrophilic parts of the designed molecules was considered in the stage of project formulations. Many partial rules governing relations between structure and activity (SAR) were found and discussed. Some structural fields of activities were more or less defined. On the other hand, I preserved for the whole time of my activity scepticism towards formulation of too general SAR rules and towards the use of QSAR for predicting new active structures.

Most of the compounds described in this review were the object of experimental work of cooperating pharmacological and in selected cases also toxicological, pharmacokinetic, metabolic, general screening and clinical teams. More interesting biological findings are mentioned in this review because the aim of the work was to find biologically active and possibly practically useful compounds. The names of the respective co-workers in these lines appear in parts A and B of references. The most important of them, however, have to be given at this place already: Jiří Křeček, Václav Jelínek, Zdeněk Votava, Václav Trčka, Jiřina Metyšová, Jan Metyš, František Hradil, Marie Bartošová, Vladislav Wildt, Martin Valchář, Milena Queisnerová, Zdeněk Franc and Oldřich Vinař.

The years 1946 - 1960 were devoted mainly to searching after new drugs influencing the vegetative nervous system: histamine H₁-antagonists and antispasmodics (for reviews cf. refs^{2,57,139}; the chemistry of antihistamine drugs and the histamine group was described in a monograph¹⁰²) were followed by ganglionic blocking agents and peripheral myorelaxants. There were three parallel episodes: (i) search after peripheral vasodilatory pyridines - mainly derivatives of nicotinic acid and 3-pyridyl carbinol, (ii) synthetic experiments in the field of estrogenic hormones, and (iii) search after antihypertensive drugs initiated by the discovery of reserpine and by its total synthesis^{563,564}. Since 1960 the research interest shifted into the field of psychotropic agents (mainly antidepressants and neuroleptics) as a natural continuation of the antihistamine chemistry. This topic remained then for thirty years the main object of my interest. The contributions of the Prague team were repeatedly reviewed^{218,260,261,295,343,491}. For psychopharmacological conferences I prepared general reviews on the progress in this field (chemistry and pharmacology); a part of these reviews was published: refs^{259,270,294,296,311,371,398,466}.

For describing in a condensed form the work done by our team the choice of a system was an important task. Three possibilities were considered to this end: (i) chronological system, (ii) system according to the pharmacological profiles, and finally (iii) the chemical system. Because this article is published in a chemical journal, the chemical system was selected. It was the most complicated one for the preparation of the manuscript but it has the advantage of bringing together chemically related compounds irrespective of the chronology of their origin and of their pharmacological character. The hierarchy of the system used is the conventional one: starting from aliphatic compounds it continues via the alicyclic, aromatic, araliphatic, condensed aromatic to heterocyclic compounds. The only exception made related to 1-pyrrolidinyl, 1-piperidinyl, 4-morpholinyl and sometimes 1-piperazinyl compounds in which these groups mimic the dimethylamino or diethylamino groups and, therefore, are classified as being aliphatic instead of heterocyclic.

Most of the final products determinated for pharmacological evaluation were amines which were tested in the form of their salts (hydrochlorides, maleates, succinates, methanesulfonates etc.). These salts were in many cases the crystalline forms of the products but they will mostly not be mentioned in the following text. References related to the known starting materials will not be given in this survey; they are available in the original papers.

For the interesting compounds which were the object of preclinical or clinical research or which reached the stage of practical use in therapy, several types of short names are used in the text: (i) our own generic names which are preferred and are used without any special designation, (ii) international nonproprietary generic names which are designed with (INN), (iii) trade names which are designed with [®], (iv) other generic names which are designed by their origin.

2 ALIPHATIC COMPOUNDS

Reaction of sodium ethoxide with 2-(1-piperidinyl)ethyl chloride in ethanol¹⁰ afforded the ether **3**. Treatment of hexanol with powdered sodium in boiling xylene and the following treatment with 2-(1-piperidinyl)ethyl chloride afforded the ether **4** (ref.¹⁵). This compound (**4**) was transformed via the methiodide to the quaternary ammonium hydroxide which was decomposed by heating to 150°C; hexanol, N-methylpiperidine and acetylene were identified as products. Reduction of ketones with lithium aluminium hydride (cf.⁴⁷) and reaction of aldehydes with alkylmagnesium halides gave eight butylalkylmethanols and reactions of ketones, esters and diethyl carbonate with alkylmagnesium bromides gave eight butyldialkylmethanols. These alcohols were transformed by treatment with sodium amide and 2-dimethylaminoethyl chloride to the corresponding ethers **5** and **6** (ref.⁵⁹). They were prepared as the aliphatic analogues of the antihistamine drug diphenhydramine (cf. formula 164). The most active members of the series

were **5** ($R = C_5H_{11}$) and **6** ($R^1 = C_4H_9$, $R^2 = CH_3$) attaining in vitro 15 % of the diphenhydramine activity.

Reaction of the sodium salt of 2-(1-piperidinyl)ethanethiol with hexyl bromide¹⁵ in ethanol gave the sulfide **7**. As possible intermediates for the synthesis of 2-aminoethanethiols, the dithiocarbonates **8** and **9** were prepared by reactions of potassium ethyl xanthate with 2-diethylaminoethyl chloride and 2-(1-piperidinyl)ethyl chloride in boiling ethanol¹⁵.

Pentamethonium bromide (**10**) (ref.⁵⁶⁵) and azamethonium bromide (**11**) (ref.⁵⁶⁶) are bisquaternary ammonium salts possessing the properties of ganglionic blocking agents and finding use in the treatment of some forms of hypertension.

Manipulation with their structures resulted first⁸⁰ in the series of three disulfonium iodides **12** ($n = 3, 4, 5$). The synthesis in the series started by reactions of dihaloalkanes with sodium methanethiolate giving the sulfides **13** ($n = 2 - 5$). Treatment with methyl iodide led in the case of the first member of the series only to the monosulfonium iodide **14**, whereas the higher members gave the disulfonium iodides **12**. Unexpectedly⁵⁶⁷ compounds **12** were only poor ganglionic blockers and had hypotensive action of short duration but **14** proved a hypotensive activity near to that of **10**. Reaction of 2-(methylthio)ethanethiol with 2-(methylthio)ethyl chloride afforded the trisulfide **15** which was transformed by treatment with methyl iodide to the disulfonium iodide **16**, considered to be an analogue of **11** (ref.⁸⁰, cf. also ref.⁷³).

Introduction of the sulfur atom into the central position of the pentamethonium bromide (**10**) chain resulted in a further series of bisquaternary ammonium salts⁸⁸. They were prepared by reactions of the sodium salts of the thiols RCH_2CH_2SH with the chlorides RCH_2CH_2Cl ($R =$ dimethylamino, diethylamino, 1-piperidinyl, 4-morpholiny) and by the following reaction of the diamino sulfides **17** with methyl or ethyl iodide. These products proved significant ganglionic blocking and hypotensive activity and the most active **18** (thiamethonium iodide) (refs^{567,568}) was selected for preclinical and clinical trials. These proved the utility of **18** in regulated hypotension in various indications⁵⁶⁹⁻⁵⁷³. Under the trade name Thiamethon® it was marketed in Czechoslovakia by SPOFA for at least twenty five years (since 1963).

Compound **19**, a homologue of **10**, known as decamethonium bromide (also iodide) (refs^{574,575}) is a prototype of peripheral myorelaxants, the so-called leptocurares which produce muscular relaxation by selective depression of central polysynaptic pathways (cause a depolarization on the neuro-muscular junctions) (ref.⁵⁷⁶).

Another compound of this type which found practical use in anaesthesia during operative manipulations, is suxamethonium iodide (or chloride) (**20**) (ref.⁵⁷⁷). Our first approach to analogues of **19** (ref.⁸⁵) resulted in the series of nine bis-, tris- and tetrakis-quaternary ammonium compounds **21** ($n = 2 - 6$), **22**, **23**, and **24** ($R = CH_3$ or C_2H_5). The synthesis of **21** - **23** started by reactions of alkanediols $HO(CH_2)_nOH$ (n

= 2 – 6), N-methyldiethanolamine and triethanolamine with 2-diethylaminoethyl chloride in the presence of sodium amide and proceeded by the following treatment of the products with ethyl iodide. Compounds 24 were obtained by reaction of sodium 2-(dimethylamino)ethanethiolate with 1,4-diiodobutane and by the following addition of methyl and ethyl iodide. The best ratio of myorelaxant activity (head-drop test in rabbits) were shown by 21 ($n = 2$) and 23 (refs^{165,578}) which, however, were not better than 19.

Two types of sulfonium analogues of 19 were prepared⁸⁶. Reaction of sodium 2-(methylthio)ethoxide with pentamethylene dibromide and the following addition of methyl iodide afforded 25. Reactions of sodium 2-(methylthio)ethanethiolate with 1,2-dibromoethane, 1,3-dibromopropane, 1,4-diiodobutane, and 1,5-dibromopentane and the usual treatment with methyl iodide gave 26 ($n = 2 – 5$). The activity of these compounds was less interesting^{165,578}. The synthesis of 20 by transesterification reaction from diethyl succinate and 2-dimethylaminoethanol and by the following addition of methyl iodide was modified⁸⁶ and this ultrashort-acting myorelaxant was introduced by SPOFA on the market as Succinylcholinjodid® (refs^{579,580}). Four new analogues of 20 were prepared⁸⁶: The first of them was succinylthiocholine iodide (27), obtained by reaction of succinyl chloride with 2-(dimethylamino)ethanethiol and subsequent treatment with methyl iodide. A further compound was succinylsulfocholine iodide (28), prepared by reaction of succinyl chloride with 2-(methylthio)ethanol and by treatment with methyl iodide. The third was succinylthiosulfocholine iodide (29) obtained by reaction of sodium 2-(methylthio)ethanethiolate with succinyl chloride and by the following treatment with methyl iodide. The analogue of 28 with reversed elements of carboxyl (30) resulted from the reaction of ethane-1,2-diol with 3-(methylthio)propionyl chloride in pyridine and by subsequent reaction with methyl iodide. Compounds 27 – 30 did not reveal in the hands of our colleagues^{165,578} any considerable activity. On the other hand, the Italian authors^{581,582} described three years after our publication⁸⁶ compound 28 as a myorelaxant of the leptocurare type of high activity in the head-drop test in rabbits.

Choline and its esters are simple aliphatic compounds playing important role in physiological processes and possessing significant pharmacodynamic activities⁵⁸³; acetylcholine salts are the prototypes of cholinergic parasympathomimetics. We also were partly involved in investigating this structural field of activity. Reaction of N-butyl-N-methyl-2-aminoethanol with methyl iodide gave the choline iodide homologue 31 (ref.⁵⁴⁴). Similar reaction of 2-(methylthio)ethanol gave sulfocholine iodide (32) (ref.¹²⁴, cf. also ref.⁵⁸⁴) which was necessary as a potential metabolite of our antispasmodic hexadiphensulfonium iodide (cf. 260). 2-(Methylthio)ethanethiol was transformed to the sodium salt which was reacted with acetyl chloride and the product was treated with methyl iodide giving acetylthiosulfocholine iodide (33) which was found to have only 1 % of the spasmogenic effect of acetylcholine chloride on the isolated rat

ileum⁷⁹. Methyl 3-(methylthio)propionate was prepared from sodium methanethiolate and methyl 3-chloropropionate¹³⁶, and transformed by the following treatment with methyl iodide to 34, the RC-analogue (reversed carboxyl analogue) of acetylsulfocholine iodide. This compound proved a very high parasympathomimetic activity and was clinically tested as carbmethosulfonium iodide. The rather limited clinical usefulness of parasympathomimetics prevented its marketing. The next higher homologue 35 was prepared similarly from ethyl 3-chloropropionate¹²⁹. Reaction of ethyl 2-(methylthio)acetate with methyl iodide proceeded as transalkylation¹²⁹ and the only isolated product was trimethylsulfonium iodide. Acylation of 2-dimethylaminoethanol with 2,2-dimethylpropanoyl, heptanoyl, octanoyl, decanoyl, and hexadecanoyl chloride afforded the esters 36 and 37 ($n = 5, 6, 8, 14$) designed as possible cerebral stimulators⁵⁴⁸; their testing was problematic (37 ($n = 5$) showed some central stimulating effect in mice – increase of motility).

2-Propylpentanoic acid (valproic acid) (38a) in the form of salts and its amide 38b (valpromide) are aliphatic anticonvulsants^{585,586} which are used in the treatment of some forms of epileptic seizures, and 38b also as a prophylactic in the maniodepressive illness⁵⁸⁷. Our team was involved in the synthesis of thia analogues of these agents⁵⁵⁸. Alkylation of diethyl 2-(methylthio)ethylmalonate with ethyl bromide and propyl bromide, the following alkaline hydrolysis and decarboxylation afforded the acids 39a ($R^1 = C_2H_5, C_3H_7$). Via acid chlorides they were transformed to the amides 39b ($R^1 = C_2H_5, C_3H_7$). These acids and amides were found ineffective as anticonvulsants in the electroshock test in mice. Alkylation of 3-thiapentanenitrile with propyl bromide in the presence of aqueous sodium hydroxide and benzyltriethylammonium chloride gave 2-propyl-3-thiapentanenitrile which was hydrolyzed with hydrochloric acid in boiling dioxane to 40a, transformed via acid chloride to 40b. These two compounds, being per se ineffective as anticonvulsants, significantly potentiate the anticonvulsant action of diazepam. Reaction of valproic acid chloride with ethyl N-(2-hydroxyethyl)carbamate afforded 41, another potential anticonvulsant⁵⁵⁸.

3 ALICYCLIC COMPOUNDS

Cyclohexanol treated with powdered sodium in boiling xylene and then with 2-(1-piperidinyl)ethyl chloride afforded the ether 42 as a model compound in the synthesis of potential antihistaminics¹⁵. 2-Methylcyclohexanone, 2,2-dimethylcyclohexanone, 2,2,6-trimethylcyclohexanone and 2,2,6,6-tetramethylcyclohexanone were processed by a series of reactions (reduction of oximes, reactions with methylmagnesium iodide, dehydration and Ritter reaction, N-formylation and reduction of the formamides, and finally methylation of the primary amines with formaldehyde and formic acid) to give the series of thirty two cyclohexylamines out of which the secondary and tertiary amines polymethylated in the vicinity of the amino group showed a high degree of ganglionic blocking and hypotensive activity^{144,568}. The most active compound penhexamine (43)

underwent preclinical study⁵⁸⁸ and successful clinical trial. For SAR study, compound 43 brought a proof of correctness of the hypothesis that the norbornane skeleton, appearing in the molecule of the ganglionic blocking and hypotensive agents mecamylamine (cf. 61) and dimecamine (cf. 63), is not indispensable: a sterically hindered methylamino or dimethylamino group on an alicyclic or even aliphatic (cf. penbutamine, refs^{589,590}) skeleton is the indispensable condition. 1,2,2-Trimethylcyclopentanol was processed by the Ritter reaction (potassium cyanide in a mixture of acetic and sulfuric acid), the obtained formamido derivative was hydrolyzed to the primary amine which was N-methylated by the Eschweiler – Clarke method and gave 44 (penpentamine) (ref.²¹³). This compound proved in clinical tests⁵⁹¹ the best properties as an anti-hypertensive agent in comparison with the other sterically hindered amines of this type.

Until 1970 (+)-tubocurarine chloride was considered to be a macrocyclic bisquaternary ammonium salt (in 1970 this view was revised⁵⁹² and it was proven that the alkaloid is a monoquaternary salt) which led us to design 45 as the most simple macrocyclic model of the alkaloid¹¹⁷. The synthesis of 45 started from cyclooctadecane-1,10-dione obtained from sebacic acid chloride which was cyclized by using the Blomquist's cyclization of bifunctional ketenes. The dioxime of the diketone was reduced with sodium in ethanol to 1,10-diaminocyclooctadecane giving 45 directly by treatment with methyl iodide in a methanolic potassium hydroxide solution. From the pharmacological point of view, 45 (cyclomethonium iodide) is a very interesting substance^{165,593-595}. In the head-drop test in rabbits, 45 is more active than tubocurarine chloride and 19; it is a short-acting substance belonging to a mixed type of relaxants. It was clinically tested but not recommended for practical use. Several months after publishing our paper¹¹⁷, Lüttringhaus et al.^{596,597} published two papers concerning the synthesis of 45 by a different procedure; their pharmacological data⁵⁹⁸ were similar to ours but neither in Germany 45 did find practical use.

In 1959 - 1963 there was a great interest in variously substituted hydrazines as mono-amine oxidase inhibitors and as an alternative in the pharmacotherapy of mental depression⁵⁹⁹. Our team was also to some extent involved in this field and it was in the first time the series of cycloalkyl hydrazines which seemed to be neglected. Our attempts to prepare the basic members of the series²⁵² by reduction of hydrazones of cyclopentanone, cyclohexanone and cycloheptanone with lithium aluminium hydride or sodium borohydride were unsuccessful. Only N,N'-dicycloheptylhydrazine (46) could be prepared by reduction of cycloheptanone azine with lithium aluminium hydride. An alternative synthetic approach was successful: reactions of benzhydrazide with the mentioned cycloalkanones gave the N-benzoylhydrazones which were hydrogenated on platinum catalyst in acetic acid to N-benzoyl-N'-cycloalkylhydrazines. Hydrolysis with boiling 6M-HCl afforded the cycloalkylhydrazines 47 (n = 1 – 3).

Betanidine (**48**) was described⁶⁰⁰ as a representative of the group of adrenergic neuron blocking agents and antihypertensive drugs. Compound **49** was designed as an alicyclic analogue of **48** and synthesized³²⁷ from 1-methylcyclohexylamine via **50** and **51**. Compound **49** was found to be rather toxic but in general it possessed the pharmacodynamic profile of guanethidine, the prototype of this series.

Reactions of cyclopentylacetyl, cycloheptylacetyl and 1-cyclopentylhexanoyl chloride with 2-dimethylaminoethanol gave the esters **52** – **54**; **53** was found to antagonize the halothan-induced amnesia in rats and **54** is an anticholinergic antispasmodic agent⁵⁴⁸.

1-Cyclohexylcyclohexene was subjected to the Ritter reaction with potassium cyanide in a mixture of sulfuric and acetic acid; the formamide **55** obtained was hydrolyzed to **56** which was methylated by the Eschweiler – Clarke method. The resulting sterically hindered tertiary amine **57** was tested as a potential ganglionic blocking agent with negative results²¹³. Spiro[5.6]dodecan-7-one (**58**) was transformed by treatment with methylmagnesium iodide and the following dehydration by heating with iodine to spiro[5.6]dodec-7(8)-ene which was subjected to the Ritter reaction followed by reduction with lithium aluminium hydride. Structures **59** and **60**, which were assigned to the last two products, are in agreement with analyses and the IR spectra (the only available data at the time of the experimental work). Because of the possibility of skeletal rearrangements, these structures cannot be considered proven²¹³. The final product was inactive as a ganglionic blocking agent.

The impetus to search after ganglioplegic antihypertensives in the series of secondary and tertiary amines was the discovery of the 2-amino-2,3,3-trimethylnorbornane derivative mecamylamine (**61**) (refs^{601,602}). Our work¹³⁵ included the synthesis of **61** as a necessary standard but proceeded further by Eschweiler – Clarke methylation of **61** and **62** to the dimethylamino analogue **63** (dimecamine). Reaction of **61** with glutaric acid chloride and the following reduction gave **64** whose methiodide combines the structural elements of pentamethonium iodide (the bromide, cf. **10**) and mecamylamine; nevertheless it was found inactive. On the other hand, dimecamine (**63**) in the form of the hydrobromide was found to be more active as a ganglionic blocking and hypotensive agent^{603,604} than **61**. After pharmacokinetic⁶⁰⁵ and clinical pharmacology⁶⁰⁶ studies it was clinically tested with very good results in patients with hypertension⁶⁰⁷⁻⁶¹². An analytical method for its differentiation from mecamylamine (**61**) was elaborated⁶¹³ and the introduction of **63** on the market (Dimecamin[®]) was announced⁶¹⁴.

4 AROMATIC COMPOUNDS

4.1 ARYL ETHERS, SULFIDES, AMINES ETC.

The Williamson reaction of the sodium salts of phenol and thymol with aminoalkyl chlorides afforded ethers 65 – 69 (refs^{10,14,44,239}) as model compounds in the antihistamine field. The methiodide of 66 was transformed to the ammonium hydroxide, heating of which produced phenyl vinyl ether and N-methylpiperidine¹⁵. The effort to increase the low antihistamine activity of 65 led to the synthesis of di- and tri(2-diethylaminoethyl) ethers of catechol, resorcinol, hydroquinone, pyrogallol, and phloroglucinol¹⁰; their antihistamine activity was negligible; the pyrogallol ether 70, however, proved important. Its quaternary salt 71 (gallamine triethiodide) was described by Bovet⁶¹⁵ as an outstanding peripheral myorelaxant. Our team^{115,165} investigated and improved the synthesis of 70 and 71 and our priority with the base 70 (ref.¹⁰) enabled the manufacture and marketing of 71 in Czechoslovakia (Parexyl®, Remyolan®, ref.⁶¹⁶). A complexometric determination of 71 was developed^{617,618}, the drug was included into the Czechoslovak Pharmacopeia⁶¹⁹ and its clinical testing confirmed its usefulness as a myorelaxant of medium duration of action in a large variety of surgical procedures^{620,621}.

Alkyl aryl ethers with the dimethylsulfonium cationic head in the alkyl residue were prepared as potential antihistaminics⁴¹ and peripheral myorelaxants⁸⁶. The ethers 72 and 73 ($R^1 = CH_3, C_2H_5$) were prepared⁴¹⁵ as analogues of the selective 5-hydroxytryptamine uptake inhibitor and antidepressant fluoxetine (74) (ref.⁶²²). Ethers 72 were obtained by reactions of potassium salts of the 2-alkoxyphenols with 3-dimethylamino-2-methylpropyl chloride in the presence of potassium iodide. Partial demethylation to 73 proceeded by treatment with ethyl chloroformate and the following alkaline hydrolysis. In the behavioural tests in animals, 72 and 73 proved inactive. Ethers 75 ($X = O, S, NH$) and their diethylamino, piperidino and morpholino analogues²⁰ were obtained by the Williamson reaction from the corresponding phenols. Only the sulfide 75 ($X = S$) had a rather high antihistamine activity but did not attain the activity of phenyltoloxamine (75, $X = CH_2$) (ref.⁶²³). The *p*-isomers of compounds 75 are inactive²⁰. Attempts to prepare the bis(2-dimethylaminoethyl) ester of 4-chlorophenoxymalonic acid either by direct esterification with 2-dimethylaminoethanol or from the diethyl ester by ester exchange reaction⁵⁴⁸ were unsuccessful; in both cases only 76 was obtained which is the known cerebral stimulant meclofenoxate⁶²⁴.

Ammonolysis and aminolysis of methyl 3,4,5-trimethoxyphenoxyacetate led to a series of amides³⁵⁸ out of which 77 (trimethophenoxyamide) displayed antiarrhythmic activity comparable with that of procainamide. After a detailed pharmacological and pharmacokinetic investigation⁶²⁵, 77 was tested clinically⁶²⁸; it proved active only in some types of cardiac rhythm disorders and caused hypotension as a side effect - for

these reasons it was dropped. Similar amides of 3,4,5-trichlorophenoxyacetic, 2,4,6-trimethylphenoxyacetic and 4-bromo-3,5-dimethoxyphenoxyacetic acid⁴⁴⁹ displayed only weak and structurally nonspecific actions (local anaesthetic, hypotensive, peripheral vasodilating).

Reaction of the sodium salt of thiophenol with 2-(1-piperidinyl)ethyl chloride gave the sulfide **78**. Its methiodide was transformed to the quaternary ammonium hydroxide giving on heating phenyl vinyl sulfide and 1-methylpiperidine¹⁵. 2-(Methylthio)ethyl phenyl sulfide added only one molecule of methyl iodide⁵¹ and gave the monosulfonium salt **79**. 4-Nitrothiophenol (sodium salt) reacted with 2-dimethylaminoethyl chloride and the nitro group was reduced with iron and hydrochloric acid; the resulting amino sulfide afforded by treatment with methyl iodide **80**. 4-Nitrophenyl 2-chloroethyl sulfone was reacted with diethylamine, the nitro group was similarly reduced and addition of methyl iodide gave **81**; these compounds were prepared as potential ganglionic blocking agents¹⁴².

Thiophenol and sixteen derivatives reacted with chloroacetonitrile and the products were transformed by treatment with hydroxylamine to a series of 2-(arylthio)acetamidoximes (**82**). In the case of 4-chloro-3-fluorothiophenol, the reaction with chloroacetonitrile led to an unexpected product identified as **83**. One member of the series of **82** ($R = 3\text{-OCH}_3$) displayed antireserpine activity in the test of ptosis in mice and in the test of reserpine-induced ulcer formation in rats and may thus be considered a potential antidepressant⁴⁰⁶. 4-Toluenesulfonamide and 4-toluenesulfonanilide were treated with sodium methoxide in methanol or with sodium amide in toluene and then with 2-dimethylaminoethyl chloride and 2-diethylaminoethyl chloride. The final treatment with methyl iodide gave **84** - **86** which proved only very weak ganglionoc blocking agents¹⁴².

The high degree of local anaesthetic activity of lidocaine (**87**) (ref.⁶²⁷) led us to manipulation with its structure. Whereas the isomer **88** (ref.⁶⁶) did not prove interesting, the known but neglected methylhomologue **89** (mesocaine), prepared by Hach in our team⁶²⁸, showed very favourable properties⁶²⁹⁻⁶³¹ and after extensive clinical trials in most different indications⁶³²⁻⁶⁴² was introduced by SPOFA (Mesocain[®]) on the market.

2,4-Dimethylchloroacetanilide treated with sodium methanethiolate gave the corresponding sulfide which reacted with methyl iodide without complications and gave the sulfonium salt **90** (ref.¹⁰⁹). On the other hand the ring unsubstituted (methylthio)acetanilide reacted with methyl iodide under transalkylation and the product was identified as the molecular complex of **91** with trimethylsulfonium iodide¹²⁹. N-Ethylaniline and diphenylamine were treated with 3-chloropropionyl chloride, the products reacted with sodium methanethiolate and then with methyl iodide giving sulfonium salts **92** and

93. The latter (93) displayed in vitro extremely high antispasmodic activity of the anti-cholinergic type (phenamsulfonium iodide) (ref.¹²⁹).

A limited interest was devoted to the biphenyl derivatives. The ether 94 was prepared as a lower homologue of the atypical antidepressant and cerebral activator bifemelane (97) (refs^{643,644}). It was obtained via the 4-bromobutoxy analogue and was found to have the profile of a thymoleptic agent: antireserpine activity in two tests and potentiation of yohimbine toxicity in rodents⁵²⁷. Addition of 2-hydroxybiphenyl to acrylonitrile gave 95 which could not be directly hydrolyzed to 96 (cleavage of acrylonitrile). For converting 95 to 96 it was necessary to proceed via the O-ethyl imidate hydrochloride and the ethyl ester of 96. The acid 96 displayed higher analgetic potency than ibuprofen⁵²⁷. In the search after new β -adrenergic blocking agents, compound 98 was prepared from 4-hydroxybiphenyl and epichlorohydrine and the following reaction with isopropylamine²⁴⁵. Compound 99 was prepared as a potential local anaesthetic from 2-aminobiphenyl by reaction with chloroacetyl chloride and by the following treatment with diethylamine⁶⁶.

4.2 ARYLAALKYL DERIVATIVES

4.2.1 *Monoarylalkyl Derivatives*

The aralkyl ethers 100 and 101 were synthesized by the Williamson reaction as model compounds in the antihistamine field^{10,15}. The methiodide of 101 was transformed to the quaternary base which decomposed on heating to benzyl alcohol, acetylene and 1-methylpiperidine¹⁵. The same 102 was obtained on the one hand from 2-diethylaminocyclohexanol, and from 2-diethylaminocyclohexyl chloride on the other⁴⁴; it is assumed to have the *trans*-configuration. Ethers 103 and 104 were prepared similarly like 72 and 73 as potential antidepressants⁴¹⁵ but proved in vivo inactive.

Reaction of sodium benzyl mercaptide with 2-(1-piperidinyl)ethyl chloride afforded 105 whose methiodide was transformed to the quaternary base; its decomposition by heating resulted in benzyl vinyl sulfide¹⁵. Hydrochlorides of benzylamine, benzyl-dimethylamine, dibenzylamine, and tribenzylamine were tested with negative results for antihistamine activity within a trial to verify a hypothesis on the mechanism of action of antihistaminic aralkylamines⁸¹. N,N-Bis(2-chloroethyl)benzylamine reacted with dimethylamine in methanol in the autoclave and gave the monoquaternary piperazine 106 as the only product⁹⁸. Reactions of 2-(benzylthio)benzyl chloride with secondary amines afforded six benzylamines out of which 107 is active in two antireserpine tests, potentiates the toxicity of yohimbine, has high affinity to imipramine as well as desipramine binding sites in the rat brain and strongly inhibits the re-uptake of 5-hydroxytryptamine as well as of noradrenaline in the rat brain structures and appears thus to be a promising potential antidepressant⁵³⁴. Even higher activity in the men-

tioned lines is displayed by moxifetin (108), the synthesis of which was described^{532,562a} by several routes from 2-(3-methoxyphenylthio)benzoic acid together with thirty one analogues. Even after the correction of the statement of selectivity of the moxifetin action (it was found that 108 is also a strong inhibitor of noradrenaline re-uptake in the brain⁶⁴⁵), the compound remains an interesting antidepressant candidate and is being prepared in the form of the hydrogen maleate by preclinical tests to clinical trials. Its crystal and molecular structure was determined by the X-ray analysis⁶⁴⁶. Biochemical pharmacology^{647,648}, animal pharmacology⁶⁴⁹, pharmacokinetics^{650,651} and metabolism⁶⁵²⁻⁶⁵⁴ were described. Its chiral homologue 109 was synthesized, resolved in the stage of the methoxy precursor but some stereoselectivity of action was found only in the line of inhibition of noradrenaline re-uptake⁵³².

Substitution reactions of 1,4-bis(chloromethyl)-2,3,5,6-tetrachlorobenzene with amines afforded ten diamines of the type 110 (ref.³¹⁹); compounds 110 displayed some central stimulant activity. The benzylaniline derivative 111 (phenbenzamine, Antergan[®]) was the first antihistamine agent which was practically used in the treatment of allergic diseases⁶⁵⁵. Our team prepared the piperidine and morpholine analogues of 111 by reactions of benzylaniline with 2-(1-piperidinyl)ethyl chloride and 2-(4-morpholinyl)ethyl chloride in the presence of sodium amide in benzene²³, out of which 112 showed 20% of the activity of 111 in vitro. The similarly prepared oxygen analogue 113 of 111 proved inactive⁴⁸. The sulfonium analogue 114 showed 10% of the activity of 111 in vitro⁵¹. 1-Phenylalkanols were transformed to 1-phenylalkyl chlorides which were reacted with N-(2-dimethylaminoethyl)aniline in the presence of sodium amide. Out of the obtained α -alkyl homologues of 111, the ethyl compound (115, n = 1) displayed the full activity of 111 in vitro⁶³. Combination of α -methylation with benzyl *p*-substitution in the molecule of 111, represented by 116 (R = CH₃, F, Cl, Br), resulted in the almost complete disappearance of the antihistamine¹⁷⁸ activity.

The sulfonium salt of the N-benzylpropionanilide series 117 (benzamsulfonium iodide) proved a very strong anticholinergic antispasmodic¹²⁹ like 93, which was considered for clinical testing. Both compounds (93, 117) were dropped because at the same time even more active ones became available (cf. 260). A combination of molecules of the antihistaminic phenbenzamine (111) and the local anaesthetic procaine (118) (ref.⁶⁵⁶), represented by 119, destroyed the antihistamine activity³⁵ (cf. also refs^{7,27}). In the series of the sulfonium analogues of local anaesthetics¹⁰⁹, the ester 120 was found to display the full local anaesthetic activity of 118. The reserpine model 121 was prepared by hydrogenation of hordenine and by the following acylation with 3,4,5-trimethoxybenzoyl chloride¹²⁷; it was devoid of hypotensive activity. Aminoalkyl esters 122, derived from 2-phenoxybenzoic, 2-phenylthiobenzoic³³, and 2-(phenylthiomethyl)benzoic acid²²² were prepared either from the acid chlorides or from the sodium salts of the acids; they have low antispasmodic activity and hypotensive effects of short duration. In the series of syringic acid derivatives⁴⁸⁴, the amide 123 displayed

some anticonvulsant activity. Our homologue 124 of the antiemetic trimethobenzamide⁶⁵⁷ showed only hypotensive effects of short duration⁴⁸⁴. 4-Ethoxybenzamidines 125, prepared as potential antihistaminics¹³ from 4-ethoxybenzonitrile via the O-ethyl imide hydrochloride, were devoid of the expected type of activity.

Bis(2-phenylethyl) sulfide was cleaved during reaction with methyl iodide and under transalkylation dimethyl-2-phenylethylsulfonium iodide was formed⁷⁵. A modified synthesis of the dopamine analogue 2-(3-fluoro-4-hydroxyphenyl)ethylamine was carried out⁴⁹⁸ (cf. also ref.⁶⁵⁸) and found inactive as a dopaminergic compound. The diphenhydramine (cf. 164) isomer 126 was prepared from 1-phenyl-2-dimethylaminoethanol by treatment with benzyl chloride in the presence of sodium amide⁶⁸. A similar reaction in the presence of sodium carbonate at 160°C led to hydramine cleavage⁶⁵⁹ combined with N-benzylation under the formation of N,N-dimethylbenzylamine and acetophenone. Compound 126 was practically devoid of antihistamine activity. A clinical paper⁶⁶⁰ on the high ganglionic blocking activity of phenyldimethonium (127) induced us to elaborate its synthesis from phenylacetonitrile via 2-(4-aminophenyl)ethylamine⁹⁸ (cf. also ref.⁶⁶¹). The activity of 127 was confirmed by Trčka⁵⁶⁷. The synthesis of 128 as a potential myorelaxant was carried out¹¹⁷ starting from (4-hydroxyphenyl)acetonitrile and proceeding via 2-(4-(2-dimethylaminoethoxy)phenyl)ethylamine; the product was found less active than 71. The amines 129, potential antidepressants⁵³⁴, were prepared from 2-(phenylthio)benzaldehyde by reaction with nitromethane, by the following reduction with lithium aluminium hydride and by N-methylation. The O-(aminoalkyl)oximes 130 and 131 were synthesized⁵⁴⁵ by O-aminoalkylation of 4-(isopropylthio)acetophenone oxime as analogues of the serotonergic antidepressant fluvoxamine⁶⁶². Our compound 130 displayed significant antireserpine activity and potentiated the yohimbine toxicity in rodents; it thus behaved like an antidepressant. The ester 132, obtained from sodium phenylacetate and 2-(methylthio)ethyl chloride, gave the methiodide by reaction with methyl iodide in low yield¹²⁹. The ester 132 was also obtained by reaction of sodium 2-phenyl-2-(1-hydroxycyclohexyl)acetate with 2-(methylthio)ethyl chloride (the thermic cleavage of the said hydroxy acid to phenylacetic acid and cyclohexanone was known). The esters 133 did not reveal in the screening any appreciable activity²²². ((2-Phenylthio)phenyl)acetonitrile was used to prepare the amidoxime 134 and several amidines 135; 134 and 135 ($NR^1R^2 = 4$ -morpholinyl) showed some antireserpine activity and are considered potential antidepressants⁵²².

In the phenylpropyl series, the potential β -adrenolytics 136 and analogues are mentioned as first. The synthesis of 136 started by reaction of 3-chlorophenylmagnesium bromide with epichlorohydrine and was concluded by reaction with 2-propylamine²⁴⁵. A further series of fluoxetine (74) analogues represented by 137 and 138 was prepared from N,N-dimethyl-3-chloro-3-phenylpropylamine⁴¹⁷; the test in vivo could not prove the character of potential antidepressants. The 3-hydroxy-4-methylamphetamine (139)

is known to cause hypermotility in mice which can be antagonized by cataleptic as well as noncataleptic neuroleptic agents⁶⁶³. It is thus a valuable tool for testing of neuroleptics. Its synthesis⁶⁶⁴ was modified by us³⁶³ which made this compound well accessible. 4-Hydroxy derivative of amphetamine and its N-monomethyl and dimethyl homologues were O-aminoalkylated⁵³⁵ to a series of diamines 140 ($n = 2$ or 3, NR_2 = dimethylamino, diethylamino, 1-pyrrolidinyl, 1-piperidinyl, and $R^1, R^2 = H$ or CH_3) accompanied in cases, when one of R^1, R^2 is H, by the triamines like 141; as potential antidepressants, 140 are inactive. Reaction of 4-(2-dimethylaminoethoxy)benzaldehyde with nitroethane gave 4-(2-dimethylaminoethoxy)benzonitrile as the only characterized product (cf. ref.⁶⁶⁵).

The amphetamine derivative 142 displayed properties of a potential antidepressant⁵³⁴. Its synthesis from ((2-phenylthio)phenyl)acetonitrile via ((2-phenylthio)phenyl)acetone proceeded smoothly. On the other hand, the synthesis starting by reaction of 2-(phenylthio)benzaldehyde with nitroethane was complicated in this first step by the unwanted formation of 2-(phenylthio)benzonitrile (cf. ref.⁶⁶⁵). Similar experiences were met in the series of methoxylated and hydroxylated analogues of 142 out of which 143 clearly showed the character of a potential antidepressant⁵⁵³. Reactions of 2-(methoxyphenylthio)benzaldehydes with nitroethane gave in addition to the wanted 1-aryl-2-nitropropenes also the corresponding benzonitriles and benzaldoximes (cf. ref.⁶⁶⁵). Only carefully purified 1-aryl-2-nitropropenes could be used in the syntheses of homogeneous amphetamine derivatives. The final methoxy amines (like 143) were demethylated with pyridine hydrochloride or with boron tribromide to the corresponding phenolic amines⁵⁵³. The vinylogy between benzyl and cinnamyl led us to synthesize analogues of phenbenzamine (111) of formula 144: cinnamaldehyde and its 4-methoxy derivative were transformed by reactions with aniline to the Schiff bases which were reduced with sodium borohydride to N-cinnamylanilines; these were alkylated with 2-dimethylaminoethyl chloride²¹¹. The antihistamine activity of 144 is weaker than that of 111. In the series of sulfonium analogues of local anaesthetics, the sulfonium salts 145 and 146 were prepared¹⁰⁹. The homologue of 127 is phenyltrimethonium (147), a potent ganglionic blocker^{567,660}, whose synthesis was also described in details⁹⁸. A further adventure in the fluoxetine (74) series⁴¹⁵ consisted in the synthesis of 148 ($R =$ methyl, ethyl, benzyl) by reactions of the potassium salts of 2-alkoxy(or benzyloxy)phenols with N,N-dimethyl-3-chloro-2-phenylpropylamine. Attempts at their partial demethylation by treatment with ethyl chloroformate led to cleavage of the molecules and obtaining of N-methyl-2-phenylallylamine after the hydrolysis. Two independent syntheses starting either from phenyl 2-propyl sulfide or 2-(4-aminophenylthio)propionic acid⁵⁴⁵ led to the thia analogue of ibuprofen⁶⁶⁶ of formula 149; the antiinflammatory activity of the compound is comparable with that of ibuprofen, the toxicity is lower and the analgetic activity is higher.

A series of 1-phenylalkanols and dialkylphenylmethanols was transformed by reactions with 2-dimethylaminoethyl, 2-diethylaminoethyl and 2-(1-piperidinyl)ethyl chloride in the presence of sodium amide in benzene to series of thirteen ethers **150** and twenty one ethers **151** which were prepared as potential antihistaminics and antispasmodics⁵⁹. The maximum antihistamine activity was attained by **150** ($R =$ methyl; $R^1 =$ butyl or pentyl), i.e. 12% that of diphenhydramine (cf. **164**), and by **151** ($R =$ methyl; $R^1 =$ butyl, isobutyl or pentyl; $R^2 =$ methyl), i.e. 25 - 30% of the diphenhydramine activity in vitro. The most active antispasmodic (anticholinergic) of the series was **150** ($R =$ ethyl, $R^1 =$ isobutyl) which was considered a candidate for clinical testing⁶⁸ (it displayed 25 - 50% of the atropine activity in vitro). Compound **150** ($NR_2 =$ 1-piperidinyl, $R^1 =$ ethyl) had the highest myotropic antispasmodic activity (ten times higher than papaverine) (ref.⁵⁹). Compound **150** ($R =$ methyl, $R^1 =$ hexyl) (ref.²¹) was prepared similarly. 1-Chloro-4-phenylbutan-2-ol was transformed to **152** which displayed clear β -adrenergic blocking activity²⁴⁵. The bisquaternary ammonium salt **153** was prepared as a potential ganglionic blocker¹¹⁷. Double alkylation of phenylacetonitrile with 2-dimethylaminoethyl chloride opened the way to **154** - **156** (ref.¹²¹), derivatives of pentamethonium iodide (cf. the bromide **10**) with only low ganglionic blocking activity⁵⁶⁸.

Multi-step syntheses led to the open heterocannabinoid models **157** and **158** (ref.⁵⁵⁰); compound **157** has high activity against the reserpine-induced ulcer formation in rats and **158** inhibits the spontaneous activity of mice. A series of aralkyl bromides was transformed by reactions with hydrazine hydrate to the corresponding aralkyl-hydrazines as potential monoamine oxidase inhibitors; compound **159** was the most active one in the test of potentiation of tryptamine convulsions in rats²⁵². 2-Phenylpentanoic acid is a suitable component of molecules of antispasmodic agents. Its 2-chloroethyl ester gave by reaction with N,N-dimethylhydrazine the hydrazone salt **160** (ref.⁷⁷). Reaction of the acid chloride with 2-(methylthio)ethanol and the following addition of methyl iodide afforded the sulfonium salt **161** (ref.⁷⁴). The sodium salt of 2-hydroxy-2-phenylpentanoic acid was reacted with 2-(methylthio)ethyl chloride and the product was treated with methyl iodide giving the antispasmodic **162** (ref.¹¹⁶).

4.2.2 *Diarylalkyl Derivatives*

4.2.2.1 *Benzhydryl Derivatives*

The 2-benzylphenol ether **75** ($X = CH_2$), phenyltoloxamine⁶²³, was already mentioned. Its sulfonium analogue **163** was synthesized⁴¹ from 2-hydroxydiphenylmethane by treatment with sodium ethoxide and 2-(methylthio)ethyl chloride in ethanol and by the following reaction with methyl iodide; it has considerable antihistamine activity in vitro but lower than ether **75** ($X = CH_2$).

Aminoalkyl benzhydryl ethers as a new group of antihistamine agents were discovered by Rieveschl at Parke and Davis in the U.S.A.¹⁰². The prototype is diphenhydramine (164, Benadryl[®]) which is on the market since 1946 (ref.⁶⁶⁷). Our team devoted much effort to SAR investigations in this series and to attempts to find useful analogues of 164. Ethers of this series were prepared by four methods: (A) from the benzhydrolate anion and aminoalkyl chlorides¹⁰, (B) from benzhydryl bromide by heating with aminoalkanols and sodium carbonate^{44,45}, (C) from benzhydryl halide and sodium aminoalkoxides (1,1,2,2-tetraphenylethane was the usual by-product) (ref.¹⁰), (D) from benzhydryl haloalkyl ethers and amines⁴⁵. Method A was new for the synthesis of 164 (ref.⁴⁵); it was also used for the preparation of the less active 165 (ref.¹⁰). The piperidine analogue 166 (benzperidine, perastin(INN)) (cf. refs^{139,169}) was prepared by methods A, B and C (ref.¹⁰) and was characterized in the form of several salts^{10,21,42}, for the IR spectrum, cf. ref.⁵⁵. Compound 166 was found unstable in boiling dilute hydrochloric acid; dibenzhydryl ether is the cleavage product¹⁰. The methiodide of 166 was transformed to the quaternary base which was cleaved on heating to benzhydrol, acetylene and 1-methylpiperidine¹⁰. The hydrochloride of 166 was found equipotent with 164.HCl (refs^{667,668}) in pharmacological tests and its clinical usefulness was verified⁶⁶⁹ which led to its introduction on the Czechoslovak market (Antihistamin[®]) where it remained until 1962 when it was substituted by a more active agent⁶⁷⁰. Analytical methods and the article for the Czechoslovak Pharmacopoeia⁶⁷¹⁻⁶⁷³ were elaborated for 166. A pharmacokinetic study was published⁶⁷⁴ and a series of papers dealt with special aspects of biological activities of benzperidine⁶⁷⁵⁻⁶⁸⁹. Toxic effects of 166 in humans were found only after accidental ingestion of excessive doses in children^{690,691}. The lower homologue of 164, i.e. compound 167 was prepared by method D and was found much less active⁴⁵.

Method A using 1,3-bis(diethylamino)-2-propyl chloride gave 168 displaying poor activity¹⁰. Method B using 1,4-bis(2-hydroxyethyl)piperazine afforded according to the conditions used either the very active 169 (importantly exceeding the antihistamine activity of 164) (ref.⁵⁸) or the uninteresting 170 (ref.²¹). The chloro compound 171, prepared from 169 (ref.⁵⁸) displayed lower antihistamine activity and some adrenolytic effect. Compound 172 was prepared by method B from N,N'-bis(2-hydroxyethyl)-N,N'-dimethylethylenediamine and was found to be devoid of activity⁵⁸. Method B produced also benzhydryl 6-dimethylaminohexyl ether⁴⁵ which was almost inactive. The benzhydrolate anion reacted with epichlorohydrine giving 173 which was transformed by treatment with secondary amines to amino alcohols 174 (R = diethylamino, 1-piperidinyl, 4-morpholinyl⁸ and also benzhydrylamino⁴⁵) which were not active. Method B using the corresponding *trans*-2-aminocyclohexanols afforded 175 (R = dimethylamino, diethylamino, 1-piperidinyl and 4-morpholinyl) with very low antihistamine activity⁴⁴. Method C used in the same series gave 1,1,2,2-tetraphenylethane as the main product⁴⁴. 2,6-Lutidine was reduced either with sodium and butanol or by

pressure hydrogenation on Raney nickel to the mixture of isomeric 2,6-lupetidines which was separated by fractional crystallization of the hydrochlorides or of the N-(benzenesulfonyl) derivatives; the configuration was assigned on the basis of IR spectra. Both isomers were transformed by reactions with 2-chloroethanol to the amino alcohols which were converted by method *B* to *cis*- and *trans*-176, dimethyl homologues of 166 (ref.⁵⁵). The work was intended as our first contribution to the problem of stereoselectivity of action but the result was poor because both isomers had only low antihistamine activity (10 – 20% of that of 166).

Nuclear substitution in the benzhydryl ether series offered a further approach to potential antihistaminics. We started with the 2-, 3- and 4-methyl derivatives of 166 (ref.⁸) which were obtained by method *A*. The most active member of the series was the methiodide of 177 with 4-methyl which was more active than the hydrochloride. The morpholine derivative 178 (4-methyl), prepared by method *A*, had 20% of the activity of 164 (ref.²¹). Special attention was devoted to the 4-hydroxy derivative of diphenhydramine, i.e. 179, which was considered a potential metabolite of 164. In our first attempt¹³³, 4-acetoxybenzophenone was hydrogenated on Raney nickel in methanol to 4-acetoxybenzhydrol which on treatment with sodium amide and 2-dimethylaminoethyl chloride gave directly an oily base whose picrate showed correct analysis for the picrate of 179. Because we could not exclude for our product the structure of the isomeric 180, this compound was also synthesized¹³³ from 4-hydroxybenzophenone by reaction with sodium ethoxide and 2-dimethylaminoethyl chloride in ethanol and by the following reduction with lithium aluminium hydride; the difference of the final products was considered a proof of correctness of formula 179. Our second approach²¹⁰ to 179 started from 4-hydroxybenzophenone which was transformed to the 2-tetrahydropyranyl ether. Reduction of the keto group with lithium aluminium hydride, following reaction with 2-dimethylaminoethyl chloride (sodium amide) and hydrolysis afforded unequivocally 179 which was found different from the product of the first approach¹³³; this was finally identified as 181. A new synthesis of 180 was also carried out²¹⁰.

Compound 182 was presented under the name of flunamine as an experimental anti-parkinsonic, dopaminomimetic and potential antidepressant⁶⁹². We prepared by method *A* (sodium hydride) its tertiary amine analogue 183 (ref.⁴⁷³) having a similar anti-cataleptic activity like 182. The structure of our product, obtained by reaction of benzhydryl bromide with 2-aminoethanol (according to ref.⁶⁹³) and assumed to be 2-aminoethyl benzhydryl ether, was corrected by Pailer⁶⁹⁴: it is in fact 2-(benzhydryl-amino)ethanol. The synthesis of 184 (ref.⁵³³) was stimulated by the fact that the dichlorobenzhydryl residue in this structure is the same like in some of the most active anxiolytic 1,4-benzodiazepines (cf. lorazepam⁶⁹⁵); compound 184 proved some anticonvulsant activity in the electroshock test in mice.

In the benzhydryl ether series a comparison of the influence of the character of the cationic head on the antihistamine activity was carried out. Reaction of 165 with ethyl iodide gave 185 having 10% of activity of 164 (all data *in vitro*) (ref.⁹⁷). Benzhydryl 2-chloroethyl ether reacted with N,N-dimethylhydrazine to give 186 being four times as active as 164 (ref.⁷⁷). Reaction of benzhydryl bromide with 2-(methylthio)ethanol and the following addition of methyl iodide afforded 187 displaying 60% of the activity of 164 (ref.⁴¹). 2-, 3- and 4-Methylbenzhydryl chlorides⁴⁹ gave similarly the corresponding methyl derivatives of 187 out of which the 4-methyl compound was twice as active as 164 (refs^{41,73}). Alkylation of thiourea with benzhydryl 2-iodoethyl ether afforded the isothiuronium iodide 188 (ref.⁷⁷) being almost inactive. Reaction of the same iodoethyl ether with triethylphosphine⁹⁷ gave 189 having 10% of the activity of 164. Finally, reaction of benzhydryl 2-chloroethyl ether with trimethylarsine⁶² gave 190 displaying *in vivo* and also *in vitro* 50% of the activity of 164. In conclusion we proved the approximately equivalent influence of the various types of cationic heads on the activity; the atypical isothiuronium head is an exception and the lower activity of the ethylionium compounds (185, 189) in comparison with the methylonium ones was well known¹⁰². Benzhydryl ethers containing instead of the cationic head only some hydrophilic groups were prepared⁶⁷ for checking the validity of our hypothesis on the possible mode of action of antihistaminics⁸¹. Reaction of benzhydryl bromide with glycerol in the presence of sodium carbonate gave a mixture which was separated by fractional distillation, the first fraction being evidently 191. Substitution reaction of ethyl 3-bromopropionate with the benzhydrolate anion and the following alkaline hydrolysis afforded 192. These compounds were devoid of antihistamine activity: the presence of the cationic head is indispensable. Two benzhydryl esters were prepared as the RC analogues (reversed carboxyl) of the antispasmodic diphenylacetic acid esters. Refluxing benzhydryl chloride with sodium 3-diethylaminopropionate in benzene³⁶ gave 193 (a papaverine-like antispasmodic) and N,N-diethylbenzhydrylamine together with benzhydryl acrylate as by-products. Reaction of benzhydrol with 3-(methylthio)propionyl chloride in the presence of pyridine¹²⁹ and the following addition of methyl iodide resulted in 194 which is a rather active anticholinergic antispasmodic. The attempts to prepare the sulfonium salts by reactions of benzhydryl 2-(methylthio)acetate and benzhydryl 2-(methylthio)propionate with methyl iodide led only to trimethylsulfonium iodide¹²⁹ (trans-alkylation). In the benzhydryl sulfide series, compound 195 (sulfide analogue of 166) was prepared^{10,15,42} either via 2-(1-piperidinyl)ethanethiol or via benzhydryl mercaptan⁸; it is almost devoid of antihistamine activity. Its methiodide was transformed to the quaternary base, the heating of which afforded benzhydryl vinyl sulfide and 1-methylpiperidine¹⁵. Sodium benzhydryl mercaptide reacted with 2-(methylthio)ethyl chloride and the following addition of methyl iodide gave 196 (very low antihistamine activity) (ref.⁵¹). Reaction of the same sodium mercaptide with N,N-diethyl-2,3-epoxypropylamine resulted in 197 (inactive) (ref.⁸). The observation that in the

benzhydryl sulfide series there comes together with the disappearing of antihistamine activity to an increase of central depressant activity led to the development of **198** (captodiamine, Covatin [®]) (ref.⁶⁹⁶) which was marketed as a psychosedative or ataractic agent with some anxiolytic component of action. Our manipulation with the structure of **198** (ref.¹⁸¹) led to **199** (dithiotolperidine), prepared via 4-(butylthio)-4'-methylbenzophenone. This compound significantly prolonged the narcotic action of thiopental in mice⁶⁹⁷ and had only very low ataxic activity; it was recommended to clinical trials which, however, were withdrawn.

Benzhydrylamine and benzophenone derivatives were also the object of our synthetic studies. Some simple benzhydrylamine derivatives like **200** - **202** were prepared⁸¹ in connection with our hypothesis on the mechanism of the antihistamine action. They were inactive which shows that there must be a certain distance between the benzhydryl carbon and the cationic head. Heating benzhydrylamine with ethyl 3-diethylaminopropionate to 200°C in the autoclave did not lead to the expected N-benzhydryl-3-diethylaminopropionamide³⁶; the main product was **203** (aminolysis and amine exchange) accompanied by dibenzhydrylamine. Benzhydrylamines **204** and **205**, obtained via 2,3'-dichlorobenzhydryl chloride⁵³³, had not interesting activity. On the other hand, compound **206**, designed as an analogue of the diazepam-like lorazafone⁶⁹⁸, displayed anticonvulsant, central depressant and antinociceptive actions⁵³³. Esters **207** (R = diethylamino, 1-piperidinyl) (ref.³³), prepared from benzophenone-2-carboxylic acid via the acid chloride, were only papaverine-like antispasmodics.

4.2.2.2 1,1-Diarylethyl Derivatives

1,1-Diarylethyl ethers and homologues are to be mentioned in the first line. Our systematic investigations of the antihistamine activity in series of homologues^{17,28,39} led to the synthesis of 1,1-diphenylethyl ethers **208** and **209** (ref.²¹) by reactions of 1,1-diphenylethanol with 2-aminoethyl chlorides in the presence of sodium amide. The products proved important because while **209** was found equipotent with **166**, **208** was twice as active as **164** in vitro⁶⁶⁸. Testing in vivo⁶⁹⁹ (histamine aerosol test and detoxication of histamine in guinea pigs) showed that **208** has six to twenty times higher activity than **164** and that it is a serious candidate for practical use (mephenhydramine, moxastine (INN)). In addition to the hydrochloride²¹, some further salts were prepared^{68,132} and for technical production its preparation by reaction of 1,1-diphenylethanol with 2-dimethylaminoethyl chloride hydrochloride in the presence of powdered sodium hydroxide was elaborated¹⁵⁴; as a minor by-product of this procedure, a crystalline molecular complex of 1,1-diphenylethanol and **208** (1:1) was isolated, characterized and prepared from the components²⁷². In comparison with **164**, the ether bond in **208** is even more unstable towards acid hydrolysis which was quantitatively confirmed in a study of the reaction kinetics⁹⁴; the rate of the hydrolysis is approximately parallel with the degree of antihistamine activity which was in agreement with our hypothesis⁸¹.

Analytical methods for the qualitative detection and quantitative determination of 208 were elaborated⁷⁰⁰⁻⁷⁰², a pharmacokinetic study was carried out⁶⁴⁷, its influence on the growth of tissue cultures was investigated⁷⁰³, and the antiulcer and gastric anti-secretory effects in experiments were described⁷⁰⁴⁻⁷⁰⁷. The compound 208 was introduced on the market in 1955 by SPOFA (Alfadryl®) and it is still used as an antiallergic⁷⁰⁸⁻⁷¹⁰ and antiulcer agent^{711,712}. Its CNS effects were also investigated⁷¹³. The literature on mephenhydramine (208) was summarized in two reviews^{139,169}. Reaction of the base 208 with 8-chlorotheophylline⁶⁸ gave a stable and crystalline molecular complex (1:1) which is an analogue of the anti-motion sickness agent dimenhydrinate (Dramamine®) (ref.⁷¹⁴). It was found⁶⁸ that our substance has higher antihistamine activity than 208 and also the central depressant activity was higher⁷¹⁵. These were the reasons for its introduction in 1958 on the market as Theadryl® (mephenhydramine, moxastine teoclinate (INN)) as an antiemetic and anti-motion sickness agent (lower doses for children under the name Kinedryl®), documented by many positive clinical reports⁷¹⁶⁻⁷²². Because of its sedative effect of the ataractic type it was also tested with positive results in the treatment of different psychoses⁷²³⁻⁷²⁶. Higher homologues of 208, i.e. 210 (R = ethyl and propyl) were prepared similarly like 208 but their antihistamine activity is low²⁹.

Further step was the study of the influence of ring substitution in 208 on the antihistamine activity. To this end a series of 3- and 4-substituted derivatives with F, Cl, Br, I, OCH₃, SCH₃ and CN as substituents was prepared¹³⁸ from the correspondingly substituted acetophenones or benzophenones by Grignard reactions with arylmagnesium bromides or methylmagnesium iodide and the following reactions with 2-dimethylaminoethyl chloride in the presence of sodium amide. The 4-substituted compounds proved interesting with 211 (meflophenhydramine) and 213 (mebrophenhydramine, embramine (INN)) as the most active ones⁷²⁷⁻⁷²⁹. Without having knowledge of the work done in Germany^{730,731} concentrated on the chloro compound 212 (chlorphenoxamine (INN), which was introduced as Systral®) our pharmacologists could not find any superiority of this compound. After having taken into account the activity and toxicity⁷²⁷⁻⁷²⁹, mebrophenhydramine (213) was selected for preclinical research^{139,169}. Its synthesis from 1-(4-bromophenyl)-1-phenylethanol and 2-dimethylaminoethyl chloride hydrochloride in the presence of sodium hydroxide¹⁵⁴ was also feasible with good yields. Methods for its detection⁷³², quantitative determination⁷⁰², polarographic determination⁷³³ and the use of capillary isotachophoresis in its analysis⁷³⁴ were described. A contribution to its pharmacokinetics was published⁷³⁵. After a general discussion of metabolic fate of antihistaminics⁷³⁶, a paper on the metabolic hydroxylation of 213 in homogenates of the rabbit's liver was published⁷³⁷. The identification of the metabolite as the 4'-hydroxy derivative of 213 was enabled by our synthesis of this compound²¹⁰ via 1-(4-bromophenyl)-1-(4-(2-tetrahydropyranloxy)phenyl)ethanol.

The introduction of the hydrochloride of **213** on the market by SPOFA (Bromadryl®) was announced in 1961 – 1962 (ref.⁷³⁸) and an early report⁷³⁹ dealt with its use in the radiation sickness. Most of the clinical papers⁷⁴⁰⁻⁷⁴⁵ relate to its use in the treatment of allergic states. In addition to a report⁷⁴⁶ on the dermatologic side effects of **213** coming from a direct contact of the skin with the substance, the central depressant and sedative side effects were reported⁷⁴⁷ as the most important ones. This fact led to the introduction of a combination containing a small dose of phenmetrazine⁷⁴⁸ (Bromadryl F®) with which the sedative effects were completely removed and the drug was reported as useful in allergic states including bronchial asthma^{741,749-753}. Another drug which found use in the treatment of asthma is the combination of **213.HCl** with ephedrine hydrochloride, theophylline and oxyphylline⁷⁵⁴⁻⁷⁶¹, marketed since 1962 as Xantedryl® and Xantedrylettae® (lower dosage for children). Mebrophephenhydramine (**213**) was licensed to the British subsidiary of Smith Kline and French Co. and it was marketed in the U.K. and mainly in India (for years the most used antihistaminic in that country) as Mebryl®. The corresponding clinical documentation⁷⁶²⁻⁷⁶⁸ was concentrated mainly to its use in the treatment of urticaria and urticarial pruritus, and also in asthma. The base **213** afforded also with 8-chlorotheophylline a crystalline and well characterized molecular complex (1:1) (ref.¹⁵⁵) (mebrophephenhydrinate, embramine teoclinate (INN)) having antihistaminic and antiemetic properties with lower sedative side effects than mephenhydrinate (ref.⁷⁶⁹). It is marketed since 1968 as Medrin® and used mainly as an antiemetic⁷⁷⁰⁻⁷⁷⁴.

Reactions of acetophenones with 2-substituted phenylmagnesium bromides (CH_3 , Cl , SCH_3 , and OCH_3) gave the corresponding tertiary alcohols and the first three of them were transformed to **214** by treatment with sodium amide and 2-dimethylaminoethyl chloride²⁷²; the 2-methoxy intermediate did not give the ether evidently due to the fact that the hydroxyl is very strongly hydrogen-bonded to the oxygen atom of the methoxy group (cf. IR). The ethers **214** are almost inactive as antihistaminics. Four ethers of the type **215** were prepared in connection with the already mentioned flunamine (**182**) and did not show any appreciable activity⁴⁷³.

4.2.2.3 Further Diaryl- and Polyaryl-alkyl Derivatives

Ethyl diphenylacetate and benzilate were reduced with lithium aluminium hydride to the alcohols **216** and **217** which was one of the first applications of this reducing agent in this country³⁷. Compound **216** was transformed to the ether **218** by treatment with 2-dimethylaminoethyl chloride and sodium amide⁹⁰; **218** is a homologue of **164** and has 30% of its antihistamine activity in vitro. Methylation of diphenylacetonitrile with methyl iodide (sodium amide), the following hydrolysis of the methylated nitrile with dilute sulfuric acid to the amide and its degradation with potassium hypobromite afforded **219**, an antihistamine model compound⁸¹. Reduction of diphenylacetopiperidide with lithium aluminium hydride⁹⁰ gave **220**, a lower homologue of the antispas-

modic fenpiprane⁷⁷⁵. 2-Chloroethyl diphenylacetate reacted with N,N-dimethylhydrazine under formation of 221 having some spasmolytic activity⁷⁷. 2-(Methylthio)ethyl diphenylacetate (obtained from diphenylacetyl chloride and 2-(methylthio)ethanol) afforded sulfonium salts out of which the ethiodide 222 displayed a spasmolytic activity in vitro (6% of the atropine activity) (ref.⁷⁴). A similar ester of benzilic acid⁷⁴ (dimethylsulfonium iodide) had 15% of the atropine activity. Diphenylacetonitrile was transformed via the O-ethyl imidate hydrochloride to 2,2-diphenylacetamidine²⁴. Reaction of diphenylchloroacetyl chloride with 2-diethylaminoethanol gave an inhomogeneous base affording a crystalline hydrochloride considered to be the dihydrochloride of 223. This product displayed a high antispasmodic (atropine-like as well as papaverine-like) activity and was introduced on the market after some pharmacological and toxicological studies as Prospasmin® (REMED) (ref.¹). Carefull crystallization of this product³³ led to homogeneous 223.2HCl, and from the mother liquor the hydrochloride of the benzilic ester 224 (benactyzine) was isolated. It was found that this component of Prospasmin® was responsible for its high atropine-like activity⁷⁷⁶, whereas 223 is a papaverine-like antispasmodic. The ester 225 (ref.³³) was evidently the intermediate of formation of 223 as well as of 224 (cf. ref.²).

Synthetic investigation on the basis of 2-(2-phenylethyl)benzoic acid led to compounds 226 – 229 (refs^{222,240}) being structurally related to the antidepressants amitriptyline (cf. 367) and imipramine. 1,2-Diphenylethanol was transformed by methods which were repeatedly described to the ether 230 (further homologue of 164) and two analogues; their antihistamine activity was low¹⁰. 2-(3,4-Dimethoxyphenyl)-1-(4-tolyl)ethanone was transformed in three steps to the dopamine derivative 231 which displayed opposite activity than expected⁴⁴⁸: it was procataleptogenic.

3,3-Diphenylpropionic acid was reduced with lithium aluminium hydride³⁷ to the alcohol 232 which was transformed to the ether 233 (further homologue of 164), almost inactive as an antihistaminic⁹⁰. 3,3-Diphenylpropyl bromide, obtained from 232, gave in two steps the sulfonium salt 234, a sulfonium analogue of fenpiprane⁷⁷⁵, almost devoid of antihistamine activity⁵¹. The mentioned bromide reacted with hydrazine hydrate and gave the hydrazine derivative 235 as a potential monoamine oxidase inhibitor²⁵². Reaction of sodium methanethiolate with 3-bromo-1-phenylpropanone, the following reaction with phenylmagnesium bromide and addition of methyl iodide afforded 236 (ref.⁷⁵). 3,3-Diphenylpropionitrile was transformed via the corresponding O-ethyl imidate hydrochloride to the amidine 237 and two its analogues²⁴; 237 displayed 10% of the antihistaminic activity of 164 in vitro. A further homologue of 164, the ether 238, was prepared from 1,3-diphenyl-2-propanol²¹ and the amine 239 was obtained by reduction of the corresponding oxime by hydrogenation on Raney nickel⁹⁰. As a potential dopaminomimetic, compound 240 was prepared⁴⁷² in five steps from 2-(3,4-dimethoxyphenyl)acetonitrile; in agreement with the expectation, this compound lowered the homovanillic acid level in corpus striatum of the rat brain.

Reaction of diphenylacetyl chloride with dimethylcadmium gave 1,1-diphenyl-2-propanone which was subjected to the Mannich reaction using dimethylamine, piperidine and morpholine²⁵. For the resulting aminoketones two different formulations were possible out of which that corresponding to 241 was preferred⁴³ on the basis of negative results of the Lieben and Kuhn – Roth methods and of the result of degradation by melting with sodium hydroxide. Correctness of our formulation was confirmed after the appearing of our publication⁴³ by two other groups^{777,778}.

3-Chlorobenzophenone and some analogues were subjected to treatment with 3-dimethylaminopropylmagnesium chloride and the resulting tertiary alcohols were dehydrated by dilute sulfuric acid to the olefinic amines like 242 being the open models of the neuroleptic chlorprothixene (cf. 593, R = 2-Cl) and displaying CNS depressant, antihistamine, antiserotonin and spasmolytic activity²¹⁴. Reduction of the intermediate alcohols with hydroiodic acid gave the dihydro derivatives of 242. Alkylation of 1,1-diphenylethane with 2-dimethylaminoethyl chloride (for the formation of the required carbanion, a reagent prepared from sodium and naphthalene in tetrahydrofuran⁷⁷⁹ was used) afforded 243 showing some anticholinergic activity. The corresponding dibenzoylalkanes afforded in four steps the quaternary salts 244 (n = 2, 4, 8) (ref.¹⁰³) out of which the lower member (n = 2) displayed a relatively high ganglionic blocking activity in cats⁵⁶⁷, whereas the higher members (n = 4, 8) were peripheral myorelaxants¹⁶⁵. The prenylamine⁷⁸⁰ analogues 245 (R = H, OCH₃, dimethylamino; R¹ = H, methyl, ethyl) (ref.⁴⁹⁶) proved uninteresting; on the other hand, the intermediate 246 showed important anorectic activity which is in agreement with the literature report⁷⁸¹ on a lower homologue. The amino alcohol 247, prepared from 3,4-diphenyl-2-butanone⁴⁹⁸, proved indication of thymoleptic character (antireserpine activity). Aminoethyl ethers derived from triphenylmethanol and 1,1,2-triphenylethanol^{10,42} are devoid of antihistamine activity.

4.3 ARYLCYCLOALKANE AND ARALKYLCYCLOALKANE DERIVATIVES

In the series of phenylcyclopentane derivatives, 4-cyclopentylacetophenone was the starting material. Its bromination, substitution reactions with amines and reduction of the keto group led to a series of amino alcohols⁴⁵² out of which 248 was the most active as a central stimulant. 4-Cyclopentylacetophenone oxime was transformed in four steps to 249 (ref.⁴²⁰), an analogue of the monoamine oxidase inhibitor pargyline⁷⁸². 4-Cyclopentylaniline afforded in three steps a series of diamines with 250 being a potential antidepressant⁴⁵⁰ (antireserpine activity). The easily accessible 1-phenylcyclohexanol was transformed to the ether 251 and some analogues⁹; 251 is almost devoid of antihistamine activity.

Ritter reaction with 1-benzylcyclopentanol led to the formamide **252** displaying some anticonvulsant activity; it was used for preparing a series of 1-benzylcyclopentylamines and their N-acyl derivatives^{234,284}. Similar work on the basis of 1-benzylcyclohexanol was also carried out²³⁴. 2-Benzyl-1-methylcyclopentanol was subjected to the Ritter reaction and the resulting formamide was transformed⁴²⁰ to amines like **253** showing hypotensive activity probably on the basis of ganglionic blockade. 1-Phenyl-3-(methylthio)-1-propanone was reacted with cyclohexylmagnesium bromide and the product treated with methyl iodide giving the weakly antispasmodic⁷⁵ sulfonium salt **254**, an analogue of the anticholinergic and antiparkinsonic trihexyphenidyl⁷⁸³. Esters of 2-, 3- and 4-(dimethylamino)benzoic acids were hydrogenated on platinum catalyst and the resulting dimethylaminocyclohexanecarboxylates were reacted with phenyl magnesium bromide¹¹⁰. Amino alcohols like **255** were obtained showing weak spasmolytic activity.

Esters of cyclohexylphenylacetic acid with a suitable cationic head in the molecule are powerful anticholinergic antispasmodics. Our group could confirm in this line the same relation like in the series of antihistaminic benzhydryl ethers: approximate equivalency of the various cationic heads from the point of view of the activity. Whereas the known drofenine (**256**, Trasentin H[®]) (ref.¹³⁹) has only about 2% of the atropine activity in vitro, the quaternary salts **257** and **258** (refs^{97,115}) have at least full atropine activity. The dimethylhydrazonium chloride **259**, obtained from 2-chloroethyl cyclohexylphenylacetate and N,N-dimethylhydrazine⁷⁷, is twice as active as atropine. The dimethylsulfonium salt **260** is much more active than atropine⁷⁴ and the triethylphosphonium iodide **261** has 20% of the atropine activity⁹⁷. The pyridinium salt **262** (hexadiphenium bromide) (ref.¹²⁹) is more active than atropine and was recommended together with **93** and **117** to clinical trials⁷⁸⁴. In the case of **262**, this was carried out⁷⁸⁵ but the agent was found less active than **260**.

The most active antispasmodic of the just mentioned series is **260** (hexadiphenylsulfonium iodide, hexasonium iodide (INN)) which was first prepared from cyclohexylphenylacetyl chloride and 2-(methylthio)ethanol and by the following addition of methyl iodide⁷⁴. A different method consisted in the reaction of 2-iodoethyl cyclohexylphenylacetate with sodium methanethiolate and in the following addition of methyl iodide⁹⁷. A similar method on the basis of 2-bromoethyl cyclohexylphenylacetate was also used¹²⁴; further methods consist in ester exchange of ethyl cyclohexylphenylacetate with 2-(methylthio)ethanol¹²⁴ and addition of methyl iodide, and finally in reaction of sodium cyclohexylphenylacetate with 2-(methylthio)ethyl chloride and treatment with methyl iodide¹²⁴. Quite recently⁷⁸⁶, cyclohexylphenylacetic acid mixed anhydride was used to esterify 2-(methylthio)ethanol. Crystal and molecular structure (preferred conformation) of **260** was investigated by the X-ray analysis^{787,788}. Methods for analytical determination of **260** were worked up^{789,790} and the stability of **260** was studied⁷⁹¹. Pharmacological reports include general reviews on the activity of sulfo-

nium salts as antispasmodics⁷⁹²⁻⁷⁹⁵, papers on the spasmolytic activity of 260 (refs⁷⁹⁶⁻⁷⁹⁸), on its effects on the intestinal motility, cardiac action and salivation^{799,800}, on gastric secretion and gastric ulcers⁸⁰¹⁻⁸⁰⁸, on higher CNS activity⁸⁰⁹, and on cholinesterases⁸¹⁰. Compound 260 was introduced on the market by SPOFA in 1957 as Thiospasmin® as an oral preparation per 25 mg of the substance⁸¹¹. The first pharmacokinetic study used unlabeled 260 (ref.⁸¹²), further studies in this line used [³⁵S]hexadiphensulfonium iodide⁸¹³⁻⁸¹⁵. Clinical studies of 260 dealt in the first line with treatment of spasms of the gastrointestinal, bile and uropoietic systems⁸¹⁶⁻⁸¹⁹, further with treatment of gastric ulcers⁸²⁰ and also with risks of therapeutic use of 260 (ref.⁸²¹). A combination of 260 with tolazoline and phenobarbital was marketed by SPOFA as Syntospon® since 1963 (ref.⁸²²). A thioester 263 related to 260 was prepared from cyclohexylphenylacetyl chloride and sodium 2-(methylthio)ethanethiolate and by the following addition of methyl iodide⁷⁹; it was found much less active than 260.

Reaction of sodium hexahydrobenzilate with 2-(methylthio)ethyl chloride and the following addition of methyl iodide resulted in 264 (oxyphen sulfonium iodide, oxysonium iodide (INN)) having at least comparable anticholinergic activity with that of 260 (ref.¹¹⁶). Its properties were described in several papers already mentioned^{790,791,794,795,798,806-808} and in some further ones⁸²³⁻⁸²⁵. It is being used in therapeutic practice as the injection form of the preceding drug (Thiospasmin inj.®).

The dimethylhydrazonium analogue 265 of the preceding compound was obtained either from 2-bromoethyl hexahydrobenzilate and N,N-dimethylhydrazine or from sodium hexahydrobenzilate and N-(2-bromoethyl)-N,N-dimethylhydrazonium bromide¹⁹⁵. It is a further extremely potent anticholinergic (oxyphenhydrazonium bromide) which was pharmacologically and clinically tested⁸²⁵⁻⁸²⁷ with very encouraging results. The good position of oxyphenonium bromide (266, Antrenyl®) on the spasmolytic market⁸²⁹ induced us to prepare a series of about twenty of its ring substituted (halogen, alkyl, methoxy, methylthio) derivatives and analogues¹⁹⁵. The corresponding aryl substituted hexahydrobenzilic acids were mostly prepared by reactions of ethyl arylglyoxylates with cyclohexylmagnesium bromide and by final hydrolysis with aqueous potassium carbonate. The sodium salts of the acids were reacted with five aminoalkyl chlorides and the products were treated with methyl halides. The 3-fluoro derivative 267 (fluoxyphenonium bromide) proved to be the best from the point of view of activity and toxicity data and was successfully pharmacologically and clinically tested^{828,830}. Compounds 265 and 267 were not introduced to practice because the well comparable 260 and 264 entered the market.

4.4 CONDENSED AROMATIC COMPOUNDS

4.4.1 *Indane and Indene Derivatives*

1-Indanone was hydrogenated on Raney nickel to 1-indanol and the same ketone was transformed by treatment with phenylmagnesium bromide to 1-phenyl-1-indanol; both alcohols gave by reactions with 2-dimethylaminoethyl chloride and sodium amide^{29,40} the ethers 268 and 269 having 15 – 20% of the antihistamine activity of 164 *in vitro*. Mannich reaction with 1-indanone, paraformaldehyde and piperidine hydrochloride in ethanol afforded in addition to 270 (ref.⁵³) the ethoxy derivative 271, a new by-product of the Mannich reaction⁵⁴. A similar reaction in butanol gave in addition to 270 the by-product 272 (ref.⁵⁴). 1-Tetralone did not show a similar side reaction⁵⁴. Reaction of 270 with phenylmagnesium bromide and the following dehydration gave 273 having high papaverine-like spasmolytic activity and some antihistamine effect⁵³. Its hydrogenation on palladium proceeded under hydrogenolysis and gave 1-phenyl-2-methylindane⁵³. The alcohol, obtained by reduction of 270 with lithium aluminium hydride¹⁰⁰, was esterified with 4-nitrobenzoyl chloride and the ester was reduced to 274 having significant local anaesthetic activity on the guinea pig's cornea¹⁰⁰. The Schiff base, obtained from 1-indanone and aniline, was reduced with lithium aluminium hydride and the product was N-alkylated with 2-dimethylaminoethyl chloride to 275, a cyclic analogue of 111, practically devoid of the antihistamine activity¹⁷⁵.

With the aim to find new antispasmodics^{46,82}, indane-1-carbonitrile (276) was needed as the starting material. Its direct synthesis from 1-chloroindane was not successful; it was necessary to alkylate diethyl malonate with 1-chloroindane, to treat the malonic ester obtained with amyl nitrite and sodium ethoxide in ethanol and to dehydrate the intermediate 1-indanyloximinoacetic acid with acetic anhydride⁴⁶. The nitrile 276 was then transformed to the amide and the corresponding acid which was converted to the ester 279. Alkylation of 276 resulted on the one hand in the basic nitrile 277, and in the benzyl derivative 278 on the other⁴⁶. Alkaline hydrolysis of 278 gave the acid which was transformed via the acid chloride to the ester 280. Alkylation of phenylacetonitrile with 1-chloroindane and the following processing of the nitrile obtained opened the access to the ester 281, a further papaverine-like antispasmodic⁴⁶. Processing of 3-phenyl-1-indanone¹¹⁹ led to the ether 282 (a weak antihistaminic); the oxime of the said ketone opened the access to the amine 283 and its derivatives¹¹⁹. Cyclization of 3-(3-methoxyphenyl)propionyl chloride with stannic chloride gave 5-methoxyindanone (284) (with 7-methoxyindanone as a minor by-product) which was used as the starting material for the synthesis of estrogenic hormone model compounds¹¹³. 5-(Bromoacetyl)indane was subjected to substitution reactions with amines (e.g. benzylmethylamine), the products were reduced with lithium aluminium hydride and in the case of benzylamines subjected to final catalytic debenzylation with hydro-

gen on a platinum catalyst; **285**, a potential sympathomimetic, was one of the products³¹⁷.

4.4.2 Naphthalene Derivatives

1-Naphthol and 2-naphthol were transformed to 2-diethyaminoethyl ethers¹⁰ and to their sulfonium analogues **286** which were almost inactive as antihistamine agents⁴¹. Heating 1-(1-naphthoxy)-2,3-epoxypropane with 1-methylcyclopentylamine, 1-methylcyclohexylamine and 1-methylcycloheptylamine afforded the amino alcohols **287**, analogues of propranolol⁸³¹, which displayed some β -adrenolytic activity⁵⁶⁰. Sodium salts of 1- and 2-thionaphthol were reacted with chloroacetonitrile and the products treated with hydroxylamine to give naphthylthioacetamidoximes **288** showing some antireserpine activity (potential antidepressants) (ref.⁴⁰⁶). 1-Naphthylphenylmethanol was transformed to the naphthalene analogue of **166** showing only 5 % of its antihistamine activity¹⁴. Compound **289** was prepared via 1-chloro-3-(1-naphthyl)-2-propanol²⁴⁵ as a further potential β -adrenolytic agent. In the search after new neurotropic agents (potential antidepressants), 6-acetyl- and 6-propionyl-nerolin were reacted with 3-dimethylaminopropylmagnesium chloride and the alcohols obtained were dehydrated with dilute sulfuric acid to **290** ($R = CH_3, C_2H_5$) (ref.²⁶⁸). 2-Diethylaminoethyl di(1-naphthylmethyl)acetate⁵⁰⁷ was synthesized as an analogue of the cerebral vasodilator naftidrofuryl⁸³².

4.4.3 Tetraline Derivatives

1-Tetralone was reduced to 1-tetralol and transformed by Grignard reaction to 1-phenyl-1-tetralol. Both alcohols were converted to the 2-dimethylaminoethyl ethers **291** and **292** as potential antihistaminics^{29,40} (low activity). 2-(1-Piperidinylmethyl)-1-tetralone (the Mannich base) was reacted with phenylmagnesium bromide to give **293**, a relatively strong papaverine-like spasmolytic agent⁵³. Its dehydration gave 1-phenyl-2-(1-piperidinylmethyl)-3,4-dihydronaphthalene. Attempts to saturate the double bond in this compound by hydrogenation on palladium proceeded under preferential hydrogenolysis via 2-methyl-1-phenyl-3,4-dihydronaphthalene to 2-methyl-1-phenyl-tetraline. Reduction of the mentioned Mannich base and two further steps resulted in **294**, a procaine analogue with high local anaesthetic activity¹⁰⁰. Tetraline-1-carbonitrile (**295**, $R = H$) was prepared either by dehydration of the corresponding amide⁴⁶ or via 2-oximino-2-(1-tetralyl)acetic acid⁸². It was alkylated to **295** ($R = \text{alkyl, allyl, benzyl, 2-diethylaminoethyl}$) which were hydrolyzed with sodium or potassium hydroxides under severe conditions to mixtures of the corresponding acids and amides. Two of the acids were transformed to 2-diethylaminoethyl esters **296** ($R = H$ or $CH_2C_6H_5$), potential antispasmodics⁴⁶. The 1-allylnitrile **295** ($R = \text{allyl}$) was hydrolyzed under simultaneous cyclization to the hexahydrophenalenene derivative⁸³³.

2,2-Dimethyl-1-tetralone was reacted with methylmagnesium iodide, the product was dehydrated by heating with iodine, the olefinic product was subjected to Ritter reaction and the formamide obtained was reduced with lithium aluminium hydride²⁰¹ giving 297; this sterically hindered amine displayed mild and brief hypotensive and ganglionic blocking effect. In the search after sulfonium analogues of local anaesthetics of the aminoacetanilide series, 5-(chloroacetamido)-6-methyltetraline was reacted with sodium methanethiolate to give 298 which, however, did not afford the methiodide¹⁰⁹.

4.4.4 6,7,8,9-Tetrahydro-5*H*-benzocycloheptenes

This skeleton was considered a suitable carrier system for biologically active molecules and our team devoted much effort to its functionalization; none of its derivatives, however, did find practical use; it was our first meeting with seven-membered ring systems. Compounds 299 - 302 were prepared^{40,53,100} similarly like the analogues in the indane and tetraline series and also their pharmacological profiles were similar: 300, antihistamine agent; 301, papaverine-like antispasmodic; 302, strong local anaesthetic. 6,7,8,9-Tetrahydrobenzocyclohepten-5-one was the starting material for many syntheses. The Schiff base, formed by its reaction with aniline, was reduced with lithium aluminium hydride and the product was alkylated with 2-dimethylaminooethyl chloride to 303, a cyclic analogue of 111, which was not found to have the expected antihistamine activity²⁷⁴. An attempt to cyclize 2,5-diphenylvaleric acid with polyphosphoric acid proceeded under decarbonylation and afforded 1-phenyltetraline²⁷⁴.

6,6-Dimethyl-6,7,8,9-tetrahydrobenzocyclohepten-5-one was treated with 3-dimethylaminopropylmagnesium chloride³⁰⁵ and the alcohol obtained was dehydrated to 304 (*E,Z*-mixture) which was devoid of antireserpine activity. Via the oxime, the ketone was transformed to the primary amine which was the basis of synthesis of the hypotensive 305, the prenylamine⁷⁸⁰ analogue 306, and the propranolol⁸³¹ analogue 307 (ref.²⁷⁴). Reformatsky reaction of the ketone with ethyl 2-bromopropionate, the following dehydration and reduction with Raney nickel alloy in alkaline solution led to the acid 308 displaying some antiinflammatory activity³³⁶. Transformation of this acid to the amide and its Hofmann degradation gave the primary amine which was methylated to 309, an amphetamine analogue having strong antireserpine activity in the test of ptosis. 5,7,8,9-Tetrahydrobenzocyclohepten-6-one³¹⁶ was also used for preparing a series of compounds; reduction of its oxime with sodium and ethanol gave 310 (amizoptene) displaying pronounced anorectic, antireserpine and mydriatic effects while the undesired stimulating effect was observed only after high doses. The amine 310 is also an analogue of amphetamine and its preparation by a different method was described by Seidl and Huisgen⁸³⁴.

2-Acetyl-6,7,8,9-tetrahydro-5*H*-benzocycloheptene was another starting material in this area. Via the corresponding bromoacetyl compound²⁸⁶, a series of amino ketones

and amino alcohols was prepared out of which 311 displayed some hypotensive and spasmolytic activity. The tertiary alcohol obtained from the 2-acetyl compound by reaction with methylmagnesium iodide, afforded in attempts at dehydration (also Ritter reaction) instead of the isopropenyl derivative its dimer, identified as 1,3,3-trimethyl-1,2,3,4,5,6,7,8,9-octahydrocyclohept[*f*]indene (312). The known 2-acetamido-6,7,8,9-tetrahydro-5*H*-benzocycloheptene was hydrolyzed to the primary amine³⁰⁴ which was converted via the 2-hydroxy compound to 313, a further propranolol⁸³¹ analogue, which proved devoid of β -adrenolytic activity. Chloromethylation of 6,7,8,9-tetrahydro-5*H*-benzocycloheptene, proceeding in position 2, served as another entry to the series. The chloromethyl compound gave easily the 2-(cyanomethyl) derivative which was reduced with lithium aluminium hydride to the primary amine displaying in addition to a mild stimulating effect a significant antireserpine activity²⁸⁵. The same nitrile was transformed by Claisen reaction with ethyl acetate and the following treatment with sulfuric acid to the corresponding arylacetone; the following reaction with methylmagnesium iodide, Ritter reaction, hydrolysis (and methylation) gave the phentermine⁸³⁵ analogues 314 (R' = H or CH₃) having – contrary to expectation – central depressant activity. Alkylation of diethyl acetamidomalonate with the chloromethyl compound and the following hydrolysis and decarboxylation afforded the phenylalanine analogue 315. Friedel – Crafts reaction of 6,7,8,9-tetrahydro-5*H*-benzocycloheptene with benzoyl chloride gave the 2-benzoyl derivative which was used³⁰⁶ to prepare the O-(aminoalkyl)oxime 316, the imine 317, and the 3-dimethylaminopropylidene compound 318; these compounds displayed central depressant activity.

4.4.5 *Tricyclic Condensed Aromatic Compounds*

4.4.5.1 *s*-Hydrindacenes

Cyclization of 5-(3-chloropropionyl)indane gave *s*-hydrindacen-1-one (319) which was an excellent entry to the *s*-hydrindacene series. This tricyclic system was almost completely neglected in the pharmaco-chemical research and was, therefore, an object of our attention. The oxime of 319 on the one hand was aminoalkylated to 320, and reduced to 321 (R¹ = R² = H) on the other³⁵³. Alkylation of 321 (R¹ = R² = H) or its acylation and reduction gave several 321 (R¹ = H or CH₃, R² = CH₃, C₂H₅, CH₂C₆H₅ or 2 = dimethylaminoethyl) displaying mild stimulating effects.

Reduction of 319 afforded *s*-hydrindacene which was acetylated to 322, an important intermediate in the series³⁶⁴. Beckmann rearrangement of its oxime and the following hydrolysis with 100% phosphoric acid gave the amine 323 which was transformed in two steps into 324, a mild tranquilizer with ataxic, hypothermic, thiopental potentiating, and spontaneous motility decreasing properties. Chloroacetylation of 323 and the following substitution reactions with amines⁴³⁵ led to a series of aminoacylamido compounds out of which 325 displayed local anaesthetic and antiarrhythmic activity. Bro-

mination of 322 gave the bromoacetyl compound which was subjected to substitution reactions with amines (incl. alkylbenzylamines) and the products were reduced to amino alcohols and debenzylated by catalytic hydrogenation; 326 is an example of the products. Instead of the expected sympathomimetic character, the only effect observed was the hypothermic one³⁷⁸. Chloromethylation of *s*-hydrindacene³⁶⁵ resulted in a mixture of the major 327 and the minor 4,8-bis(chloromethyl) derivative. After separation, both of these chloromethyl compounds were used for further syntheses. Reaction of 327 with benzylmethylamine, the following catalytic debenzylation, and alkylation with propargyl bromide afforded 328, a pargyline⁷⁸² analogue; in agreement with the expectation, 328 potentiates the tryptamine-induced convulsions and has a mild stimulating effect. The 4,8-bis(chloromethyl) compound gave by reaction with 2-(1-piperazinyl)ethanol compound 332 having sedative, antiarrhythmic and surprisingly peripheral myorelaxant activity. Alkylation of diethyl formamidomalonate with 327 followed by hydrolysis and decarboxylation afforded the tricyclic phenylalanine analogue 329 (ref.³⁷⁹). The cyanomethyl compound, prepared from 327, was transformed in two steps to (*s*-hydrindacene-4-yl)acetone whose oxime was used to prepare the amphetamine analogues 330 out of which especially the amino and dimethylamino compounds proved amphetamine-like properties (anorectic, antireserpine). A misleading hypothesis was the reason for multi-step syntheses of 331 ($n = 3$ or 4) as potential neuroleptics⁴¹⁹; the products were devoid of this type of activity.

4.4.5.2 Acenaphthene and Fluorene Derivatives

Acenaphthene as a pharmacophore in the molecules of drugs is also rare. Our investigation in this series was of limited extent²⁶⁸. 2,2-Dimethylacenaphthen-1-one (333) was subjected to treatment with 3-dimethylaminopropylmagnesium chloride and the product was easily dehydrated to a mixture of geometric isomers of 334 out of which one homogeneous component was isolated. The ketone 333 was reduced with sodium borohydride to the alcohol which was transformed to the 2-dimethylaminoethyl ether 335. The mentioned alcohol gave by treatment with hydrogen chloride the relatively unreactive 1-chloro compound affording by heating with 1-methylpiperazine only 19% of 336 (characterized only by the analysis of the picrate). None of these products did show any interesting properties.

9-Fluorenol as a cyclic analogue of benzhydrol was used to prepare aminoalkyl ethers like 337 which is almost devoid of antihistamine activity¹⁴. Fluorene-9-carboxylic acid is a cyclic analogue of diphenylacetic acid which led to the preparation of its 2-(methylthio)ethyl ester and the sulfonium salt 338 having about 10% of the spasmolytic activity of atropine *in vitro*⁷⁴. Some fluorene compounds were also prepared as tricyclic models of the estrogenic hormones. In a model study, ethyl 2-methylcyclohexanone-2-carboxylate was treated with phenylmagnesium bromide and the product was transformed in three steps to crystalline and stereochemically probably homogeneous

2-phenyl-1-methylcyclohexane-1-carboxylic acid. Cyclization of its chloride with stannic chloride afforded the tetrahydrofluorenone 339 (ref.⁸⁴). Using 4-methoxyphenylmagnesium bromide instead of phenylmagnesium bromide led to an analogous methoxy ketone which was demethylated by heating with pyridine hydrochloride to 340 (ref.⁸⁵). In an attempt to prepare the methyl ether of B-nordoisynolic acid (341) by cyclization of the lactone 342 with aluminium chloride and hydrogen chloride¹⁴⁹, an inhomogeneous and estrogenically inactive acid C₁₈H₂₄O₃ was obtained. The inactivity indicates that the product is more likely the isomeric acid 343 (analogies^{836,837}).

4.4.5.3 Anthracene and Phenanthrene Derivatives

The known spiroanthracene-9,1'-cyclopropan-10-one gave by treatment with 3-dimethylaminopropylmagnesium chloride²⁶⁸ the expected alcohol 344 which, however, could not be dehydrated by an acid-catalyzed reaction under preservation of cyclopropane: treatment with hydrochloric acid gave 345, with acetic anhydride 346, with picric acid in boiling ethanol 347 (cf. also ref.⁸³⁸).

In the neurotropic field, 10,10-dimethyl-9,10-dihydrophenanthrene-9-one was transformed by treatment with 3-dimethylaminopropylmagnesium chloride to the alcohol 348 which was dehydrated by heating with phosphoryl chloride²⁶⁸. The product was found to be 349 (spectra); the primarily formed carbocation was stabilized under rearrangement. The by-product was identified as the known 9,10-dimethylphenanthrene.

The hydrophenanthrenecarboxylic acids 350 and 352 were described in the literature⁵ as the estrogenically highly active degradation products of estrone and equilenine and named doisynolic (350) and bisdehydrodoisynolic acid (352); the methyl ethers 351 and 353 retain the high degree of activity. Our first original contribution in this area was the synthesis of the isomer of 353 with methoxyl shifted from position 7 to 9, i.e. 354 (ref.⁸³). The synthesis started from methyl 9-methoxy-2-methyl-1-oxo-1,2,3,4-tetrahydrophenanthrene-2-carboxylate and proceeded in four steps. The product 354 was crystalline, probably homogeneous (ethyl and carboxyl probably in *cis*-position) and in the growth test estrogenically inactive.

In our synthesis of 351 we elaborated first the preparation of the two basic intermediates, i.e. 3-methoxyphenylacetylene^{52,125} (from 3-methoxybenzaldehyde in four steps (cf. also ref.⁸³⁸)) and methyl 2-ethyl-1-methyl-3-oxocyclohexane-1-carboxylate¹¹⁸ (from Hagemann's ester in five steps). Reaction of these two components in the presence of potassium tert-butoxide in tert-butyl alcohol afforded the acetylenic lactone 355 (ref.¹²⁵) which was hydrogenated on palladium in methanol to the crystalline saturated lactone 356. Its cyclization with hydrogen chloride and aluminium chloride in benzene resulted in 351 as a stereoisomeric mixture having estrogenic activity comparable with that of estradiol benzoate. Further purification gave one homogeneous racemate, identified by the courtesy of Dr G. Anner (CIBA, Basel) by direct comparison

with products of the total synthesis of the Swiss authors⁸⁴⁹ as the C α stereoisomer 357. A similar synthesis starting from 3-methoxy-4-methylphenylacetylene¹⁴³ resulted in the crystalline and biologically active 6-methyldoisynolic acid methyl ether 358 having probably the same configuration like 357. Reduction of 356 with lithium aluminium hydride¹⁵⁰ gave the crystalline diol 359 which was cyclized with polyphosphoric acid to a compound C₁₉H₂₆O being most likely 360 (assigned on the basis of analogy of a similar reaction of 2-ethyl-1-methylcyclohexylmethanol and of the following hydrogenation); the cyclization was evidently accompanied by dehydration under Wagner – Meerwein rearrangement (cf. also ref.⁸⁴¹). Compound 361 (inactive oily mixture of stereoisomers) was synthesized from ethyl 2-oxocyclohexanecarboxylate in ten steps¹³¹ as an open model of 351.

4.4.5.4 Dibenzo[*a,d*]cycloheptene Derivatives

Our team¹³⁷ was one of the first attacking the chemistry of this system within pharmaco-chemical investigations. The known ketone 362 was the best entry whose use led in the first study to fifteen dibenzo[*a,d*]cycloheptene derivatives including 363 – 366. A modified procedure for preparing 362 consisted in the cyclization of 2-(2-phenylethyl)benzoic acid with a mixture of phosphoryl chloride and zinc chloride at 60°C (ref.²¹⁶). The alcohol 363 was transformed to the 2-dimethylaminoethyl ether¹³⁷ and its methiodide 364 displaying quite important antihistamine activity in vitro. Attempts to acylate 363 by several acid chlorides in the presence of N,N-dimethylaniline led, surprisingly, to 366. Reaction of 362 with 3-dimethylaminopropylmagnesium chloride gave the tertiary alcohol¹⁶⁸ which was dehydrated to 367. This compound (proheptadiene) was recognized as having antireserpine, antihistamine and antiserotonin actions^{842,843} and was recommended to clinical trials. In the meantime it appeared abroad⁸⁴⁴ as amitriptyline and has been used with success until now in the treatment of mental depressions. Our clinicians⁸⁴⁵⁻⁸⁴⁷ could only confirm these findings. Anyway, amitriptyline was introduced on the Czechoslovak market (Amitriptylin-SPOFA[®]) and for us it represented an important step on the way from antihistaminics to psychotropic agents, in this case especially to antidepressants. The transformation of 367 to the secondary amine 369 (nortriptyline) by treatment with ethyl chloroformate and by hydrolysis of the intermediate carbamate 368 was much improved and some independent synthetic ways were found²³² which enabled also the introduction of this antidepressant (Nortriptylin-SPOFA[®]) on the Czechoslovak market⁸⁴⁸⁻⁸⁵³.

Catalytic hydrogenation of 367 or reduction of its alcohol precursor with hydroiodic acid afforded the saturated side-chain amine 370. Its lower homologue 372 was obtained from 371 by treatment with butyllithium and 2-dimethylaminoethyl chloride¹⁶⁸. These saturated amines were less active as potential antidepressants. Carboxylic acid 373 was also accessible from 371 by lithiation and then carbonation¹⁶⁸. The synthesis of 374, the putative acid metabolite of amitriptyline⁸⁵⁴, was carried out from 375 (ref.⁵⁰¹).

Methods of preparing derivatives of 362 substituted in position 3 by atom of chlorine, methyl, methoxyl, and methylthio were worked up and these ketones were used to synthesize similarly¹⁶⁷ the corresponding amitriptyline derivatives out of which 376 in the form of a homogeneous geometrical isomer (chlorproheptadiene) was also clinically tested with interesting results⁸⁵⁵. The transformation of the 10,11-saturated ketones like 362 into the 10,11-dehydro analogues was possible and the unsaturated ketones were used¹⁸² to prepare compounds 377 (proheptatriene, cyclobezaprine (INN)) and 378 (chlorproheptatriene). The former (377) was found interesting⁸⁵⁶ and was used clinically for some time as an experimental antidepressant⁸⁵⁷⁻⁸⁶¹. The synthesis of 379, the lower homologue of 377, was also carried out²³².

The 10-ketones 380 and 381 are accessible by cyclization of the corresponding 2-(2-benzylphenyl)acetic acids and were the source of preparation of several types of amines^{207,231}. Both ketones were reduced with sodium borohydride to the secondary alcohols which were transformed to the ethers 382 and 383; both compounds had anti-histaminic, antiserotonin and sedative activity. The alcohols were further converted to the 10-chloro compounds giving by substitution reactions with 1-methylpiperazine compounds 384 and 385 (peraptene and chloroperaptene). They have strong sedative activity and 385 is a neuroleptic agent much more active than chlorpromazine. It was clear that this type was very promising in the line of antipsychotic activity but the fact that the priority in this area belonged to the Rhone – Poulenc company⁸⁶² led to discontinuation of our activity in this series. Interesting was the reaction of the oxime of 380 with 3-dimethylaminopropylmagnesium chloride²³¹. The product was characterized as 4b-(3-dimethylaminopropyl)-5a,10-dihydroazirino[2,3-*m*]dibenzo[*a,d*]cycloheptene (386) which was hydrolyzed with picric acid in boiling ethanol to 387.

4.4.5.5 Bridged Aromatic Tricycles

The known ketone 388 was transformed in the usual way into 9-(3-dimethylaminopropylidene)-6,7,8,9-tetrahydro-5*H*-5,8-methanobenzocycloheptene (389) (ref.²²¹). Cyclization of 1-benzylcyclohexanol and its 3-chlorophenyl analogue with polyphosphoric acid gave 5,6,7,8,9,10-hexahydro-5,9-methanobenzocyclooctene and its 2-chloro derivative²²¹ which were oxidized with chromic anhydride to the ketone 390 and its 2-chloro derivative. Reduction of 390 afforded the corresponding alcohol which was converted to the ether 391 displaying some analgetic activity¹⁴⁸. Ketones 390 (2-H and 2-Cl) were transformed to the olefinic amines 392 (2-H and 2-Cl) which were devoid of neurotropic activity²²¹.

4.4.6 Tetracyclic Condensed Aromatic Compounds

4.4.6.1 11*H*-Benzo[*a*]fluorenes

Compounds having this skeleton were prepared as analogues of the estrogenic hormone equilenine. Ethyl 1-methyl-2-oxocyclohexane-1-carboxylate was reacted with 2-naphthylmagnesium bromide, the obtained mixture of stereoisomeric alcohols was dehydrated, the double bond was saturated by catalytic hydrogenation (Pd), the ester function was hydrolyzed and the resulting 1-methyl-2-(2-naphthyl)cyclohexane-1-carboxylic acid was cyclized in the form of the acid chloride with stannic chloride to 393 (ref.⁹⁵). Similar synthesis using 6-methoxy-2-naphthylmagnesium bromide and leaving the double bond untouched¹¹¹ led to the crystalline ramic 11-oxo-14,15-dehydro-C-nor-D-homoequilenine methyl ether (394).

4.4.6.2 Direction to Hydrocyclopenta[*e*]phenanthrenes

Studies summarized in this paragraph are not classified according to the structure of the products prepared but according to the final goal of the work. Contributions to the total synthesis of the estrogenic hormones were the object of the studies (cf. also refs^{6,72,152}). The main contribution consisted in the synthesis of the stereochemically homogeneous esters 395 (ref.⁶⁹) and 396 (ref.¹⁰¹). Ethyl 3-(ethoxycarbonylmethyl)-1-methyl-2-oxo-3(4)-cyclohexene-1-carboxylate⁶⁹ was subjected to reaction with anisole and aluminium chloride according to the Indian authors⁸⁶³⁻⁸⁶⁵ and 395 was obtained which was transformed by ester exchange to 396. While refs⁸⁶³⁻⁸⁶⁵ described 395 and 396 only as amorphous mixtures of stereoisomers, our products were crystalline and the dimethyl ester 396 was proven to be identical with an intermediate of an accomplished total synthesis of estrone⁸⁶⁶ but obtained by a completely different way. Partial hydrolysis of 395 gave 397, transformed in crude state to the acid chloride and cyclized with stannic chloride to an inhomogeneous and oily product assumed to be 398 (mixture of stereoisomers) (ref.¹⁰¹). Model synthetic experiments^{157,174,177} proceeding via 399 – 401 were discontinued because of unsuccessful attempts to C-alkylate these compounds to the desired position (the reason was probably the complete enolization of these compounds).

In an attempt to prepare starting materials for the synthesis of equilenine, 6-acetyl-nerolin and 6-(3-(methoxycarbonyl)propionyl)nerolin were brominated and structures 402 and 403 were assigned to the products¹¹². Dr J. Jacques (College de France, Paris) expressed doubts on the correctness of these structures⁸⁶⁷; in a common work¹⁶³, structures 404 and 405 were proven for our products and different methods leading to 402 and 403 were elaborated (bromination with phenyltrimethylammonium perbromide or with pyridinium bromide perbromide). Hydrindan-1,4-dione (406) was the object of our attention as a possible CD fragment of the molecules of estrogens. The first synthetic attempt⁹¹ starting from dimethyl 3-nitrophthalate was discontinued after four

steps in the stage of dimethyl 3-oxocyclohexane-1,2-dicarboxylate. The trials to reduce 4-methoxyindanone¹¹³ with lithium in ammonia or sodium in ammonia did not afford characterized products. Finally, 406 was prepared¹²³ from 4-hydroxyindanone whose oxime was hydrogenated on platinum catalyst to the crystalline 1-aminohydrindan-4-ol (probably *cis* on the junction). Treatment with nitrous acid gave hydrindane-1,4-diol which was oxidized with chromic acid to 406 (probably *cis*) giving a crystalline and homogeneous bis(2,4-dinitrophenylhydrazone). In connection with an attempt to prepare 4-methoxy-1-tetralone as an intermediate, 4-methoxy-4-phenylbutyric acid was prepared from the known methyl 2-acetoxymercuri-3-methoxy-3-phenylpropionate in six steps¹¹⁴; an attempt at its cyclization in the form of the acid chloride in situ with stannic chloride resulted only in 4-chloro-4-phenylbutyric acid. An attempt to synthesize 7a-methyl-1,4-hydrindanedione (407) from 3,6-dihydroxyphthalonitrile by a multi-step procedure was finished in the stage of the mixture of stereoisomeric 408 (ref.⁹¹). Reaction of ethyl 3-bromo-1-methyl-2-oxocyclohexane-1-carboxylate with potassium acetate in boiling acetic acid gave the mixture of isomeric 409 which was separated and both isomers were characterized¹⁰⁵. They were assumed to be potential intermediates in this area but many of their reactions¹⁰⁵ did not lead to useful results.

5 HETEROCYCLIC COMPOUNDS

5.1 HETEROMONOCYCLIC COMPOUNDS

5.1.1 *Furan, Thiophene, Pyrrole, Thiazole, and Pyrazole Derivatives*

Starting from furan-2-carboxaldehyde and proceeding via the secondary alcohol, the ether 410, the furan analogue of 164, was prepared¹⁹. Its methiodide displayed lower antihistamine activity than diphenhydramine (164) *in vitro*. A simultaneously appearing report⁸⁶⁸ gave for the unstable acetate of 410 a higher activity. A modified synthesis⁵⁰⁷ of the cerebral vasodilator naftidrofuryl 411 was described and the product was characterized as a mixture of two racemates in the ratio of 66:34. The analogous 412 was prepared from the known di(2-tetrahydrofuryl)acetic acid⁵⁰⁷. The synthesis of the very active anticholinergic spasmolytic agent penthienate bromide (413) was carried out²²⁷ in the time when only pharmacological⁸⁶⁹ and clinical⁸⁷⁰ reports were available.

Our synthesis of the ganglionic blocker pentolinium bromide (414) was a similar case⁹⁹; its high activity was confirmed⁵⁶⁷. The antidopaminergic neuroleptic agent sulpiride (415) was prepared by a modified route⁵⁰⁹ together with some analogues. Ethyl 3-(ethoxycarbonyl)propionimidate hydrochloride reacted with ammonia in ethanol and instead of the expected amidine gave a product, identified as 5-imino-2-pyrrolidone³⁰. The chain homologous imidates reacted normally and did not give the corre-

sponding ring homologues⁸⁷¹. The choline ester iodides **416** and **417** were prepared⁵⁵⁶ from ethyl (2-oxo-1-pyrrolidinyl)acetate as a structural combination of the molecules of the nootropic agent piracetam⁸⁷² and acetylcholine which should play a role in memory deficits associated with aging. The 4-chloroanilide **418** was prepared from the chloride of the mentioned acid and was found to potentiate the anticonvulsant effect of diazepam in mice, to prolong the survival time of mice under conditions of nitrogen anoxia and to prolong the duration of the gasping reflex (acute brain ischemia induced by decapitation) in mice⁵⁵⁶.

The thiazole derivative **419** was prepared as a potential local anaesthetic⁶⁶. Attempts to prepare N'-isopropylcyancetohydrazide either by reduction of the corresponding acetone hydrazone with sodium borohydride or by reaction of methyl cyanoacetate with N-isopropylhydrazine gave a product C₅H₁₁N₃O which was identified as the pyrazolidinone **420** (ref.²⁵²). This product, erroneously assumed to be the wanted isopropylcyancetohydrazide, was used in a study⁸⁷³ of its influence on the monoamine oxidase.

5.1.2 Imidazole Derivatives

In connection with our involvement in the group of antihistamine agents, we also were interested in the chemistry of histamine (**421**) and of its analogues¹⁸. Our contribution to the synthesis of histamine consisted in its preparation from 2-(4(5)-imidazolyl)acetonitrile by reduction with lithium aluminium hydride on the one hand⁵⁶, and by its pressure hydrogenation on Raney nickel on the other. N-Benzylhistamine (**422**), having neither histamine nor antihistamine activity, was prepared from **421** and benzaldehyde by catalytic hydrogenation on a platinum catalyst (reductive alkylation) (ref.⁷¹). Reaction of 4(5)-chloromethylimidazole with sodium methanethiolate gave **423** reacting with methyl iodide under transalkylation resulting in trimethylsulfonium iodide¹⁰⁴. Reaction of 2-(4(5)-imidazolyl)acetonitrile with ethylenediamine in carbon disulfide¹³⁰ in the presence of water afforded **424** displaying clear histamine-like activity on the isolated intestine as well as on the blood pressure. 5-Methyl-1*H*-imidazole-4-ylmethanethiol was reacted with a series of aralkyl halides in the presence of sodium hydroxide⁵⁴⁷. Out of the products obtained, **425** and **426** showed some pharmacological properties which are considered predictive of antidepressant action.

In the 4,5-dihydroimidazole series, the histamine analogue **427** was prepared from 3-(benzamido)propionitrile via the O-ethyl imidate hydrochloride, by its reaction with ethylenediamine and acid hydrolysis²⁶; compound **427** has neither histamine nor antihistamine activity. Reaction of benzhydrol with sodium in xylene, followed by treatment with 2-chloromethyl-4,5-dihydroimidazole resulted in **428** (diphenazoline, Antadril[®]) having in vitro 40% of the antihistamine activity¹² of diphenhydramine (**164**). Compound **428** was prepared almost simultaneously and independently on three other

places⁸⁷⁴⁻⁸⁷⁶. Compound **429** (antazoline, Antistin[®], Analergin[®]) is a mild but much used antihistamine agent⁸⁷⁷. Our contribution to its chemistry consisted in the preparation of its several new salts¹³², in identification of the product of its alkaline hydrolysis⁹³ as N-(2-aminoethyl)-2-(N-benzylanilino)acetamide, and in the synthesis of its 4-methyl-, 4-methoxy - and 4-chlorobenzyl analogues⁹² being altogether less active than **429**. Compound **430** (phentolamine, Regitin[®]) is a sympatholytic and hypotensive agent⁸⁷⁸. By reactions of correspondingly substituted diphenylamines with 2-(chloromethyl)-4,5-dihydroimidazole, our group¹⁰⁶ prepared three analogues of **430** for checking the dependence of activity on structure in this series : the desmethyl analogue was found to have the opposite effect, i.e. sympathomimetic; the *o*-tolyl analogue had about 50% of the activity of **430**; the *m*-tolyl analogue was found to be indifferent. Heating (2-phenylthiophenyl)acetonitrile with ethylenediamine tosylate led to **431** having mild antireserpine activity⁵²² (potential antidepressant). Similar reaction of 3,3-diphenylpropionitrile gave 2-(2,2-diphenylethyl)-4,5-dihydroimidazole and diphenylacetonitrile gave similarly the corresponding lower homologue²⁴. Compound **432** was synthesized from the nitrile via the corresponding O-ethyl imide hydrochloride⁵²⁷. The 2-amino-4,5-dihydroimidazole derivative **433** (clonidine, Catapresan[®]) is a very active antihypertensive and sympatholytic drug⁸⁷⁹. Our analogues **434** (ref.³²⁷) and **435** (ref.⁴³⁵) did not display interesting activity.

5.1.3 Tetrahydrothiopyran Derivatives

3,4,5,6-Tetrahydro-2*H*-thiopyran-4-ol was used to prepare the ester sulfonium salts **436** – **438** (ref.¹³⁶). The former (**436**, mecylosulfonium iodide) was found to be a very strong parasympathomimetic (cyclic analogue of acetylcholine iodide); it was clinically tested but the limited usefulness of this type of neurotropic agents did not enable its production. The other two compounds (**437**, **438**) are strong anticholinergic spasmolytics. Reaction of the same alcohol with benzhydryl chloride in the presence of sodium carbonate gave the benzhydryl ether and addition of methyl iodide led to **439**, a weak antihistaminic⁵⁰⁰. Reaction of 4-tetrahydrothiopyranyl magnesium bromide with 10,11-dihydrodibenzo[*a,d*]cyclohepten-5-one, the following dehydration and addition of methyl iodide gave **440** which did not prove a potential antidepressant but a compound with antihistamine and anticholinergic properties⁵⁰⁰. The dimethylamino Mannich base derived from tetrahydrothiopyran-4-one was reacted with a series of arylmagnesium bromides giving ten amino alcohols (*cis*- and *trans*-mixtures). Compound **441**, which was separated to the major *trans*- and minor *cis*-component⁵⁰⁵, is a thia analogue of the analgetic agent tramadol⁸⁸⁰. After our publication⁵⁰⁵, another report on the synthesis of **441** was published⁸⁸¹. Demethylation of *trans*-**441** gave *trans*-**442** proving higher analgetic activity than tramadol.

5.1.4 Pyridine Derivatives

A series of pyridinium salts was prepared by reactions of 2-(benzhydryloxy)ethyl iodide and chloride with pyridine and six of its homologues⁷⁶; the unsubstituted **443** had the highest antihistamine activity (20% of that of **164** and **166**). Ethyl esters of all the three isomeric pyridinecarboxylic acids were reduced with lithium aluminium hydride to the isomeric pyridylmethanols³⁷ which was a very early use of this reducing agent. 3-Pyridylmethanol (Ronicol[®]) which is a potent peripheral vasodilator, was also prepared from pyridine-3-carbonitrile by catalytic hydrogenation on Raney nickel and the following reaction of the obtained 3-(aminomethyl)pyridine with nitrous acid⁵⁰. Further transformations to 3-(chloromethyl)pyridine and 3-pyridylmethylmercaptan were also described⁵⁰. Reactions of 3-pyridylmethanol with sodium amide and benzhydryl bromide afforded the ether **444** (almost devoid of antihistamine activity) together with 1,1,2,2-tetraphenylethane⁶⁸. Piperidine and morpholine analogues of the antihistaminic agents pyribenzamine⁸⁸² and mepyramine⁸⁸³ (**445** and **446**, X = CH₂ or O) were prepared²³ by aminoalkylation of N-benzyl-2-aminopyridine and its N-(4-methoxybenzyl) analogue; the most active was found to be **445** (X = CH₂) having 50% of the activity of phenbenzamine (**111**). Out of the α -alkyl homologues of pyribenzamine, the ethyl homologue **447** was found to be the most active⁶³ (twice as active as **111**). Combination of α -methylation and *p*-substitution in benzyl (cf. **448**, R = CH₃, Cl, F, Br) led to significant decrease of the antihistamine activity¹⁷⁸. Also the vinylogues of pyribenzamine and mepyramine (**449**, R = H or OCH₃) were weak antihistamine agents²¹¹. The indane containing cyclic analogues **450** (R = H, Cl) are almost inactive¹⁷⁵.

N-(2-Pyridyl)benzamide was prepared on the basis of an erroneous report on its antihistamine activity³². N-(2-Pyridyl)chloroacetamide, obtained from 2-aminopyridine and chloroacetyl chloride⁶⁶, reacted with diethylamine under the formation of **451**, a potential local anaesthetic. A similar reaction with 1-methylpiperazine gave **452** which inhibits very potently the formation of indomethacine-induced gastric ulcers in rats but is rather weak as an antisecretory and anticholinergic agent⁵³⁰. 2-Amino-3-methylpyridine reacted with chloroacetyl chloride under the formation of **453** which could be transformed to **454** by treatment with diethylamine⁶⁶. 3-Acetyl- and 3-propionylpyridine reacted with phenyl- and 4-tolylmagnesium bromide under the formation of the tertiary alcohols which were transformed to ethers by reactions with aminoethyl chlorides^{16,42}. Combinations **455** and **456** were found most convenient from the point of view of antihistamine activity¹⁷ (approximately equipotent with **164** and **166**). For the marketed 2-pyridyl analogue doxylamine (Decapry[®]), a similar intensity of effect was reported⁸⁸⁴.

Nicotinic acid is a well known peripheral vasodilating agent which was the reason for our efforts at finding more suitable agents of this type in the area of nicotinic acid

derivatives. The hydrophilicity of such derivatives was one condition and this was the reason for preparing esters of nicotinic acid with alkylene glycols $\text{HO}(\text{CH}_2)_n\text{OH}$ with $n = 2, 3, 5, 6$. Reactions of nicotinoyl chloride with these glycols gave on one hand the hydroxyalkyl esters, and diesters on the other⁶⁴. Out of the monoesters the lowest member of the series, i.e. 457 (ethiacine) proved the best and protracted vasodilating activity^{885,886} and the agent was recommended to clinical trials. Its analytical determination⁸⁸⁷ was worked out but the introduction to practice became impossible because of its instability in aqueous solutions. Reaction of nicotinoyl chloride with 2-(methylthio)ethanol and the following addition of methyl iodide^{64,80} gave 458 which showed properties of a hypotensive ganglionic blocker⁵⁶⁷. In addition to the glycol dinicotinates, the similar esters of picolinic and isonicotinic acid were also prepared⁷⁰, transformed to dimethiodides which were hydrogenated on platinum and the saturated products transformed again to dimethiodides. Compounds 459 and 460 displayed some curare-like activity in some of the tests available^{165,578}. The synthesis of benzyl or benzhydryl esters of nicotinic acid⁴⁹ presumed their easy hydrolysis and such esters were considered prodrugs of nicotinic acid. Compound 461 displayed considerable hypotensive activity but was relatively toxic⁸⁸⁵. Reactions of nicotinoyl chloride with benzylamine and aminopyridines gave the corresponding nicotinamides⁶⁴; heating of nicotinic acid with N-phenylethylenediamine afforded N-(2-anilinoethyl)nicotinamide³¹ having low antihistamine activity. The nicotinamide 462 displayed protracted hypotensive and peripheral vasodilating effect²³⁴. Compound 463 was obtained from nicotinoyl chloride and 4-(2-diethylaminoethoxy)aniline⁴⁸⁴.

(3-Pyridyl)acetonitrile was used as the starting material for the synthesis of several derivatives of homonicotinic acid⁶⁰, e.g. 464 – 466; the first two are weak antispasmodics, the latter has mild pressoric effect (the opposite effect to that of the phenyl analogue tolazoline⁸⁸⁸). Alkylation of phenylacetonitrile with 2-bromopyridine gave 2-phenyl-2-(2-pyridyl)acetonitrile⁶⁵ which was also used for further syntheses; one of the products was 467. Several α -substituted 2-pyridylthioacetamides⁵¹⁴ were prepared as potential anti-ulcer agents. N-Alkylation of 4-phenyl-1,2,3,6-tetrahydropyridine with phenacyl chloride was the entry to the synthesis of potential analgetics like 468 and 469.

5.1.5 *Piperidine Derivatives*

N-Monosubstituted piperidines as analogues of the corresponding dialkylamino compounds were mostly described in the preceding paragraphs. This chapter is devoted – with some exceptions – to C-substituted piperidines. N-Phenacylpiperidine and its methyl homologue were transformed by reactions with arylmagnesium bromides to the amino alcohols 470 ($\text{R} = \text{H}$ or Cl , $\text{R}^1 = \text{H}$ or CH_3) as potential antitussive agents¹⁹³. The piperidine analogue of pentolonium bromide (414) was prepared¹¹⁷ and was found to be less active as a ganglionic blocker⁵⁶⁷ as 414. The amphetaminoid 471 (mix-

ture of stereoisomers) was prepared by reductive amination of phenylacetone with 3-amino-1-ethylpiperidine and sodium borohydride⁵⁴⁴. 1-Methyl-4-piperidinol, 1-benzyl-4-piperidinol and 1-methyl-4-phenyl-4-piperidinol were transformed by nucleophilic substitution reactions with 2- or 4-fluorophenyl sulfides in dimethylformamide and in the presence of sodium hydride into the corresponding ethers⁵⁴⁰ out of which 472 and 473 displayed activity in tests considered indicative of antidepressant activity.

N-(4-Piperidinyl)benzamides 474 and 475 were prepared as analogues of sulpiride (415) (refs^{509,554}) and 475 proved to be an antidopaminergic neuroleptic with mild ataxic, cataleptic and antiapomorphine activities. 4-Aryl-4-substituted piperidines gave by treatment with S-methylisothiouronium sulfate compounds 476 which were prepared as potential blockers of the adrenergic neurones³²⁷ but were devoid of antihypertensive activity. 1-(3-Chloropropyl)-4-phenylpiperidine was used to the synthesis of several 3-(4-phenyl-1-piperidinyl)propyl esters²²⁷ out of which 477 was an anticholinergic antispasmodic and mydriatic agent. Compound 478 was obtained from 1-(4-chlorobutyryl)-4-cyclopentylbenzene and 4-phenyl-4-piperidinol⁵¹¹ and had properties of a tranquillizer.

Penfluridol (479) is an oral and long-acting neuroleptic agent⁸⁸⁹. The need of a sample of this compound as a standard led us to search after more convenient synthetic routes than those described. The first new route started from 4,4'-difluorobenzophenone and proceeded via 481 which was processed by reaction with 4-chloro-3-trifluoromethylphenylmagnesium bromide³⁰³. Another one used 4,4-bis(4-fluorophenyl)butyric acid and proceeded via 482 which was reduced with lithium aluminium hydride³⁰³. The best method found started by elaboration of a reliable synthesis of the mentioned acid by reaction of 4-(4-fluorophenyl)butyrolactone with fluorobenzene and aluminium chloride³⁷⁴, the acid was reduced with sodium dihydridobis(2-methoxyethoxo)aluminate to the alcohol giving by treatment with hydrobromic acid 4,4-bis(4-fluorophenyl)butyl bromide. The final substitution reaction with 4-(3-chloro-4-trifluoromethylphenyl)piperidine-4-ol afforded 479. This synthesis together with the following preclinical^{890,891} and clinical studies⁸⁹² enabled the introduction of 479 to psychopharmacological practice in this country (Micefal®). Its decanoic ester 480, described by our group⁴¹⁴, proved an ultralong acting depot neuroleptic in the tests of antiapomorphine activity in dogs. On the other hand, the cyclic analogue 483 proved inactive³⁷⁴.

Compound 484 was prepared from 4-bromobenzophenone by treatment with 1-methyl-4-piperidinylmagnesium chloride and by the following dehydration⁵⁴⁴; it displayed a mild antihistamine effect in vivo and significant peripheral antiserotonin activity. A similar synthesis of the antihistamine and antiserotonin agent cyproheptadine (485) was published by us¹⁸³ two years before the publication of the original authors⁸⁹³.

The analgetic activity of pethidine (486) (ref.⁸⁹⁴), a simple model of the morphine molecule, induced our extensive experimental work in this field starting mostly from norpethidine (487). A new synthesis¹⁹¹ of oxpheneridine (488) (ref.⁸⁹⁵) and of its acetate was carried out; both compounds proved higher analgetic activity than 486. The amine analogues²²³ of oxpheneridine like 489 proved inactive. The same result was reached with 490 (ref.³⁹³). On the other hand, the amino alcohol 491, obtained in two steps from 487, was rather active as an analgetic¹⁹¹. 1-Methyl-4-piperidone reacted with 4-cyclopropylphenylmagnesium bromide and the product was acylated with propionyl chloride to give 492 (ref.⁵⁴⁴), the analgetically inactive cyclopropyl derivative of the reversed carboxyl analogue of pethidine having significant activity⁸⁹⁶. Much experimental work was devoted to the synthesis of analogues of the extremely potent analgetic fentanyl (493) (ref.⁸⁹⁷). Only the very near analogues 494 – 496 displayed activity near to that of 493 (ref.⁵⁴⁴).

5.1.6 *Morpholine Derivatives*

Some N-monosubstituted morpholines were mentioned in the preceding paragraphs as analogues of the dialkylamino derivatives. Morpholines 497 were unexpectedly obtained as products of reactions of 4-(alkylsulfonyl)phenacyl bromides with diethanolamine⁴⁸⁵. The methiodide of 497 (R = CH₂CH(CH₃)₂) showed peripheral myorelaxant effect.

5.1.7 *Pyrimidine Derivatives*

In the effort to prepare some pyrimidine analogues of histamine, the correspondingly substituted diethyl malonates were reacted with thiourea and the products were hydrolyzed to give 498 (ref.³⁴). Attempt to cyclize 4-(4-chlorophenylthio)-2-(methylthio)pyrimidine-4-acetic acid with trifluoroacetic anhydride gave the enol 499 which was transformed by the action of sulfuric acid³⁴⁷ into 500.

5.1.8 *Piperazine Derivatives*

Some of the piperazine derivatives were already mentioned in the preceding paragraphs, many will be described in the following ones. Here some further compounds will be mentioned in whose molecules piperazine plays a cardinal role.

A series of variously Ar-substituted analogues of 1-phenyl-4,4-dimethylpiperazinium iodide (DMPP), a known stimulant of sympathetic as well as parasympathetic ganglia⁸⁹⁸ was prepared³⁴² having instead of one methyl group 2-cyanoethyl, 2-amino-carbonylethyl or 2-ethoxycarbonylethyl; the products have ganglionic blocking, hypotensive and myorelaxant properties being at the same time considerably toxic. Out of the piperazine derivatives containing the 4-cyclopentylphenyl residue in the mole-

cules^{497,511,512} **501** displayed analgetic activity in the peritoneal test, **502** and **503** are tranquillizers with ataxic, antiamphetamine, thiopental potentiating, and locomotor activity inhibiting effects. In the sulpiride (cf. 415) series, **504** and **505** proved the character of antidopaminergic neuroleptics with some ataxic and antiapomorphine activity^{509,559}. A series of naphthyl- and tetralylpiperazines³²⁰ was prepared by heating hydrochlorides of the naphthyl- and tetralylamines with diethanolamine hydrochloride, and by the following N-substitution; **506** was found to be a mild neuroleptic with ataxic, hypothermic, antiamphetamine, and cataleptic activity. One of our compounds, 1-(1-naphthyl)piperazine, was described more recently⁸⁹⁹ as a 5-hydroxytryptamine-1B agonist. The prepared 1-(2-fluorenyl)piperazines were found uninteresting³⁵². Series of piperazine-containing 2-substituted 6,7,8,9-tetrahydro-5H-benzocycloheptenes were prepared^{304,317,318}: **507** is a potential antidepressant, **508** has central stimulating and hyperthermic effects, and **509** is a sedative.

The putative bioisosterism between pyridine and nitrobenzene⁹⁰⁰ led to the synthesis of **510** having important anti-ulcer and anticholinergic activity and being thus similar to the tricyclic pyridine derivative pirenzepine⁹⁰¹. Anti-ulcer activity was also found with 5-(2-(4-methyl-1-piperazinyl)acetamido)methyl-10,11-dihydrodibenzo[*a,d*]cycloheptene⁵²³. Some of the 1-(2,4,6-trimethylbenzyl)piperazines³⁴⁵ showed mild central stimulating activity. 2,3,5,6-Tetrachloro-1,4-bis(4-methyl-1-piperazinylmethyl)benzene was peripheral vasodilator and hypotensive in rats³¹⁹. Similar properties were shown by 1-(3-dimethylamino-3-phenylpropyl)-4-methylpiperazine⁴⁰⁸. The N-(2-Hydroxyethyl)piperazino analogues of penfluridol (cf. 479) and their esters were inactive as neuroleptics³⁷⁴. Reactions of ethyl (2-oxo-1-pyrrolidinyl)acetate with monosubstituted piperazines gave a series of piperazides out of which **511** and **512** were more active than piracetam⁸⁷² by their antiamnesic effects in rats, by antagonizing the brain-damaging effects of cycloheximide in infantile rats and by their potentiation of the effects of anticonvulsant agents⁵⁵⁷. 4'-Chloro-4-fluorobutyrophenone was subjected to the substitution reaction with 1-(ethoxycarbonyl)piperazine, the product was hydrolyzed and subjected to further transformations³³⁰; all of the products were noncataleptic and **513** had strong ataxic activity. 1-Methyl-4-(1,2-diphenylethyl)piperazine, an open model of perathiepin (cf. 737, R = H), did not influence the CNS (ref.²⁵¹). Some further open models of this compound and of octoclolothepin (cf. 737, R = 8-Cl), e.g. **514** and **515**, were likewise inactive as neuroleptics^{277,375}. Compound **515** and its analogues⁵⁰⁶ showed some anthelmintic activity. A further open model of octoclolothepin, i.e. **516**, was an anticonvulsant³⁵⁹. For the similarly constructed **517**, antidepressant activity was indicated in the literature; its synthesis by a different method was carried out together with the synthesis of a series of analogues but indications of antidepressant activity could not be noted⁴⁶⁰.

Substitution reactions of 4-(alkylsulfonyl)phenacyl bromides with 1-arylpiperazines afforded a series of phenacylpiperazines out of which **518** (mesylphenacyrazine) was

selected as a sedative with low toxicity for clinical testing³³⁷. Its pharmacology was investigated⁹⁰²⁻⁹⁰⁷, the [¹⁴C]substance (label in the CO group) was synthesized and pharmacokinetic and metabolic study was carried out⁹⁰⁸; compound **519** (main metabolite) (cf. ³³⁷), N-phenylpiperazine, 4-(methylsulfonyl)benzoic acid, and 4'-hydroxy derivative of **518** (cf. ref. ³³⁷) were identified as urine metabolites. Phase 1 of clinical trials^{909,910} proved the sedative and hypnotic effect but showed also some side-effects (mainly of adrenolytic character) which resulted in stopping the experimentation with **518**. Several further analogues of **518** were found uninteresting^{338,485}. The structure of the antitussive agent eprazinone⁹¹¹ induced us to synthesize several fluorinated amino analogues **520** with comparable antitussive activity in rats and guinea pigs⁴⁵⁴. We were also involved in the investigation of the structural field of analgetic activity of the piperazine AP-237 (ref. ⁹¹²) and our product **521** proved more active than the prototype and had also antiinflammatory activity⁴²⁴. 1-(4-Methoxyphenoxyacetyl)-4-(2-phenylethyl)piperazine⁵⁰⁸ was found to have sedative, antiarrhythmic and indications of thymoleptic activity. In the series of 1-acyl(or thioacyl)-4-benzylpiperazines, analogues of the antidepressant piberaline⁹¹³, compounds **522** and **523** displayed some activity of a similar type⁵⁴⁶. 1-(1-(4-Methoxyphenyl)-3-phenylpropyl)-4-methylpiperazine²⁷⁵, a member of a longer series of analogues, displayed anticonvulsant, hypothermic, thiopental potentiating, and mydriatic activities. Compound **524**, prepared in four steps from 2-(3,4-dimethoxyphenyl)-1-(4-tolyl)ethanone⁴⁴⁸ as a dopamine analogue, proved anti cataleptic activity.

5.2 HETEROBICYCLIC COMPOUNDS

5.2.1 *cis*-2-Azabicyclo[3.3.0]octanes and *cis*-8-Azabicyclo[4.3.0]nonanes

Compounds **525** and **526** were prepared³²⁷ as analogues of the adrenergic neurones blocking agent guanethidine⁹¹⁴; the latter (guanisoline, **526**) showed in a battery of tests properties similar to those of guanethidine and was used in an orientation clinical test with hypertonic patients using oral administration. Its antihypertensive effect was found unreliable and the clinical testing was stopped³²⁷.

5.2.2 *Benzob[b]thiophene and Indole Derivatives*

(5-Chloro-2-(phenylthio)phenyl)acetothiomorpholide and its 5-methyl analogue gave on treatment with polyphosphoric acid **527** (R = Cl or CH₃) which constituted a new synthesis of benzob[b]thiophene skeleton^{375,390}. Compounds **527** were transformed by acid hydrolysis to 2(3H)-benzo[b]thiophenones **528**.

Alkylation of indole with 3-dimethylaminopropyl chloride (NaH, dimethylformamide) gave 1-(3-dimethylaminopropyl)indole²³⁹. Acylation of 2,3-dihydroindole with chloroacetyl chloride and the following reaction with diethylamine afforded 1-

(diethylaminoacetyl)-2,3-dihydroindole as a potential local anaesthetic⁶⁶. Japp-Klingemann reaction of ethyl 2-oxopiperidine-3-carboxylate with aryldiazonium chlorides and the following Fischer cyclization gave the 1-oxo-1,2,3,4-tetrahydrocarbolines which were hydrolyzed to the corresponding tryptamine-2-carboxylic acids. Decarboxylation by heating with hydrochloric acid gave in addition to tryptamine (**529**, R = H) its 5-methyl, 5-fluoro, 5-methoxy, 5-ethoxy, 5-methylthio and 7-methylthio derivatives¹⁴⁷, needed as intermediates. Another approach to substituted tryptamines started from the corresponding indoles giving by reactions with oxalyl chloride and the following ammonolysis the 3-indolylglyoxylic amides which were reduced with lithium aluminium hydride; in this way, in addition to 6-methoxy- the 6-ethoxy- and 5,6-methylenedioxytryptamine were obtained. 5-Hydroxytryptamine is an important biogenic amine⁹¹⁵ (serotonin); its modified synthesis was described by Vejdělek⁹¹⁶. Series of tryptamine derivatives were synthesized^{145,192} as model compounds related to the hypotensive alkaloid reserpine; their activity was unimportant.

5.2.3 2,1-Benzisoxazole and Benzimidazole Derivatives

5-Chloro-3-phenyl-2,1-benzisoxazole (**530**, Ar = C₆H₅) is an important intermediate in the synthesis of the anxiolytic 1,4-benzodiazepine derivatives and is formed in a high yield by reaction of 4-chloronitrobenzene with phenylacetonitrile in methanolic solution of sodium (or potassium) hydroxide. Our use of (6,7,8,9-tetrahydro-5H-benzocyclohepten-2-yl)acetonitrile as a component³⁹³ led easily to **531**. The use of *o*-substituted phenylacetonitriles affords on the other hand mixtures with low proportion of **530** and several by-products. (2-Chlorophenyl)acetonitrile gave only 12% of **530** together with **532**, **533** and **537** as the most typical by-products⁴⁰⁴. From the reaction of (2-fluorophenyl)acetonitrile only **532** (and its deoxygenated analogue) and **537** (R = 2-F) were obtained⁴⁰⁴. (2-Methylphenyl)acetonitrile gave 54% of **530** together with **534** (R = CH₃) and **536** (ref.⁵¹⁰). (2-Methoxyphenyl)acetonitrile resulted in 27% of **530** together with **532** (and its deoxygenated analogue) (ref.⁵¹⁰). Reaction of (2-methylthiophenyl)acetonitrile gave also 27% of **530** together with **534** (R = SCH₃) and a further atypical by-product⁵¹⁰. Similar reactions of (3-chloro-4-methoxyphenyl)acetonitrile and (3,4-dimethoxyphenyl)acetonitrile gave about 75% of **530** and small amounts of less typical by-products, e.g. **535** (ref.⁵²⁴). Compounds **530** were used as intermediates for further synthetic work.

Alkylation of 2-(phenoxyethyl)benzimidazole with 2-dimethylaminoethyl chloride and 3-dimethylaminopropyl chloride gave **537a** (n = 2 or 3) (ref.²³⁹). Reactions of 2-(4,4'-dihalobenzhydryloxy)ethyl bromide with 1-(4-piperidinyl)-2-benzimidazolone resulted in the flunamine (**182**) analogues **538** (R = F or Br) (ref.⁴⁷³). 10,11-Dihydro-5H-dibenzo[*a,d*]cycloheptene-5-ol was transformed in four steps to **539**, a practically inactive analogue⁵¹⁶ of the antiallergic agent oxatomide⁹¹⁷.

5.2.4 Pyrrolopyridines and Pyridoimidazoles

5-Methyl-2-phenyl-1*H*-pyrrolo[3,2-*b*]pyridine was transformed by alkylation with 2-dimethylaminoethyl chloride⁶¹ to 540, a heterocyclic analogue of phenbenzamine (111) which is practically devoid of antihistamine activity. Potassium salt of quinolinic acid imide was alkylated with 2-dimethylaminoethyl chloride, the product was reduced with lithium aluminium hydride and methyl iodide was added affording the 5,7-dihydro-6*H*-pyrrolo[3,4-*b*]pyridine derivative 541 displaying only weak hypotensive activity and lacking the ganglionic blocking effect²⁰² (for a similar work, cf. ref.⁹¹⁸). The anomalous products of reactions of 2-(N-substituted amino)pyridines (phenyl, cyclohexyl, butyl, benzyl, 2-phenylethyl) with chloroacetyl chloride were designated on the basis of a detailed NMR study as 1-substituted 4-(chloromethyl)-2-oxopyrido[1,2-*a*]pyrimidin-5-ium-3-olates⁵³⁰. Dr Winkler (CIBA-GEIGY, Basel) expressed doubts on the correctness of this formulation and prefers the structure of 1-substituted 3-(chloroacetyl)-pyrido[1,2-*a*]imidazole-4-iun-2-olates 542 based partly on results published in ref.⁹²⁰ which includes our 1-phenyl compound and for which a sydnone structure 543 was suggested. The case needs reinvestigation.

5.2.5 2,8-Diazaspiro[4.5]decane and 2-Azabicyclo[3.3.1]nonane Derivatives

Compound 544 (RS-86), accessible in several steps from 1-methyl-4-piperidone, is an analgetic and sedative agent with central muscarinic (cholinergic agonist) effect after oral administration⁹²¹. A series of analogues was prepared⁵⁵⁵ but only 545 proved interesting : it prolongs significantly the survival time of mice in the test of nitrogen anoxia and in high oral doses it induces the appearance of the parkinsonic syndrome which lasted for more than one month and of ataxia (mice) which persisted for more than one week. 2-Azabicyclo[3.3.1]nonane (546, morphan) is a fragment of the morphine molecule. We started its synthesis¹¹ from the oxime of ethyl (3-oxocyclohexyl)acetate which was hydrogenated on platinum and then hydrolyzed. The obtained amino acid had not tendency to form the lactam and was therefor evidently the *trans*-acid 547. The synthesis of 546 was carried out shortly^{922,923} after our work (cf. also ref.⁹²⁴).

5.2.6 1,4-Benzodioxan, 2-Benzothiopyran, Quinoline and Isoquinoline Derivatives

Compound 548 was prepared from 2-chloromethyl-2,3-dihydro-1,4-benzodioxan as a potential adrenolytic agent¹⁰⁸; it proved some hypotensive action. (2-(2-Chlorophenyl)ethylthio)acetyl chloride cyclized by treatment with aluminium chloride under decarbonylation⁵⁶² to 549, characterized as the methiodide and sulfone. 1-(2-Benzhydryloxyethyl)quinolinium iodide⁷⁶ was prepared as a potential antihistamine agent and 1-(diethylaminoacetyl)-1,2,3,4-tetrahydroquinoline⁶⁶ as a potential local anaesthetic. 2-Phenylquinoline was hydrogenated to a mixture of two tetrahydro products which was separated by acetylation and 1,2,3,4-tetrahydro compound was aminoalkylated²⁹; 550

(a cyclic analogue of 111) displayed in vitro the full antihistamine activity of 111. On the other hand, 1-(2-dimethylaminoethyl)-2-methyl-1,2,3,4-tetrahydroquinoline⁶¹ was inactive. 8-(2-Diethylaminoethoxy)quinoline¹⁰ was also inactive. Compound 551, prepared from 2-chlorocinchoninic acid chloride in two steps¹⁰⁹ as an analogue of the local anaesthetic cinchocaine, gave only the inactive monomethiodide. Starting from 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline, a series of N-substituted derivatives as potential analgetics was prepared¹⁹⁴; compound 552 was the most potent one but had only 3% of the morphine activity. Using the Bischler – Napieralski reaction, followed by reduction and N-alkylation, a series of oxa and thia analogues of the analgetic methopholine⁹²⁵ was prepared; the most active member of the series was 553 (ref.²²⁵). Compound 554 was prepared¹⁹⁸ as an open model of the corresponding berbine derivative. The cyclic dopamine analogue 555, obtained from 2-(3,4-dimethoxyphenyl)-1-(4-tolyl)ethylamine by Bischler – Napieralski reaction, the following reduction and O-demethylation⁴⁴⁸, displayed an opposite effect than expected : it was procataleptogenic.

5.2.7 *Benzoxepin, Benzothiepin and Benzoselenepin Derivatives*

8-Chloro-2,3,4,5-tetrahydro-1-benzoxepin-5-one was obtained by cyclization of 4-(3-chlorophenoxy)butyric acid with polyphosphoric acid²⁷⁹ and amine functions were introduced by many ways. As examples of the products, 556 (with some guanethidine-like hypotensive effect) and 557 (analogue of the already mentioned pargyline) may be shown. The Beckmann rearrangement of the ketone gave 9-chloro-2,3,4,5-tetrahydro-1,5-bezoxazocine-6-one (558) and the product of the reaction of the ketone with sodium azide and sulfuric acid was characterized as 9-chloro-5,6-dihydro-4H-tetrazolo[5,1-*e*]-1,6-benzoxazocine (559). Cyclization of 4-(3-chlorophenoxy)-2-phenylbutyric acid gave 8-chloro-4-phenyl-2,3,4,5-tetrahydro-1-bezoxepin-5-one²⁸⁰ which was also used as the starting material for the synthesis of amino compounds.

2,3,4,5-Tetrahydro-1-benzothiepin-5-one was transformed via the oxime to the 5-amino compound and its N-alkylated derivatives²⁴⁴ and via the alcohol and chloride to a series of tertiary amines. The pargyline analogue 560 has higher antireserpine activity than pargyline itself. Reaction of the ketone with diethyl carbonate (NaH) gave the 4-(ethoxycarbonyl) derivative which reacted with phenylhydrazine and afforded 2-phenyl-2,3,4,5-tetrahydropyrazolo[3,4-*d*]-1-benzothiepin-3-one (561). The propranolol analogue 562 was prepared from 2,3,4,5-tetrahydro-1-benzothiepin in six steps²⁸² but proved inactive as a β -blocker. An attempt to cyclize 4-phenyl-4-(phenylthio)butyric acid with polyphosphoric acid in toluene²⁸² did not give the wanted 2-phenyl-2,3,4,5-tetrahydro-1-benzothiepin-5-one but 7-methyl-4-phenyl-1-tetralone (under cleavage of thiophenol and interaction with toluene). Cyclization of 2-phenyl-4-(phenylthio)butyric acid with polyphosphoric acid at 150°C took also an anomalous course²⁷⁸ : an orange substance C₁₆H₁₀S was formed for which several structures were suggested. The UV

spectrum calculated for indeno[1,2-c]-1-benzothiopyran (563) was in best agreement with the experimental values and structure 563 was accepted for the product (the mechanism of its formation is unclear). The corresponding *p*-methylated acid cyclized smoothly and the ketone was transformed in four steps to 564 (stereoisomeric mixture) having some sedative and antireserpine activity²⁷⁸. 1,2,4,5-Tetrahydro-3-benzothiepin-5-one was reacted with phenylmagnesium bromide, the crystalline alcohol was dehydrated to oily C₁₆H₁₆S which reacted with methyl iodide under a strange cleavage reaction and gave 3-methyl-1,2,4,5-tetrahydro-3-benzothiepinium iodide⁵⁶². The synthesis of 2,3,4,5-tetrahydro-1-benzoselenepin-5-one was improved²⁵³ and the ketone was transformed to the oxime and the secondary alcohol.

5.2.8 Benzazepine Derivatives

2,3,4,5-Tetrahydro-1*H*-1-benzazepine-2-one was reacted with primary amines and titanium tetrachloride to give the cyclic amidines, 2-amino-4,5-dihydro-3*H*-1-benzazepines⁴⁷⁹, with indications of some peripheral neurotropic effects. The Beckmann rearrangement of the oxime of 7-fluoro-4-(4-fluorophenyl)-1-tetralone gave the 1-benzazepine derivative 565 as the main product and the naphthylamine 566 as a by-product⁴²¹ (Semmler – Wolff aromatization). The Schmidt reaction with the mentioned tetralone resulted in 565 as the main product and the isomeric 567 as the by-product³⁷⁴. Compound 565 was reduced to the amine which was used for preparing further derivatives⁴²¹. 2,3,4,5-Tetrahydro-1*H*-3-benzazepine-2-one was also used as the starting point for preparing a series of amines including 568, a cyclic analogue of pargyline²³⁹. Cyclization of the appropriately substituted N-(2-arylethyl)mandelamides with polyphosphoric acid gave lactams of the tetrahydro-3-benzazepine series (569, X = O) which were transformed by treatment with phosphorus pentasulfide to thiolactams 569 (X = S) (ref.⁵⁶¹). Attempts to transform N-(2-phenoxyethyl)benzamide and N-(2-phenylthioethyl)benzamide to derivatives of 1,4-benzoxazepine and 1,4-benzothiazepine²⁴⁰ by the Bischler – Napieralski reaction were unsuccessful; 2-phenyl-4,5-dihydro-oxazole was the product in both cases.

5.2.9 1,4-Benzodiazepines

Most compounds we prepared in this group were used as intermediates or standards. The first two cases are exceptions. The benzisoxazole 531 was reduced with iron and acetic acid to 2-(2-amino-5-chlorobenzoyl)-6,7,8,9-tetrahydro-5*H*-benzocycloheptene whose oxime was cyclized by reaction with chloroacetyl chloride to 570. Final treatment with methylamine led under rearrangement³⁹³ to the chlordizepoxide analogue 571 which did not show anticonvulsant activity. Nordazepam (573, R = H) was alkylated with 3-(4-phenyl-1-piperazinyl)propyl chloride to 572 having properties of a potential hypnotic agent⁴⁰⁴. Delorazepam (573, R = 2-Cl) was prepared by a modified

route⁴⁰⁴: the bezisoxazole **530** (Ar = 2-chlorophenyl) was reduced with iron and acetic acid to 2-amino-5,2'-dichlorobenzophenone which was acylated with phthalimidoacetyl chloride. The product was cleaved by hydrazinolysis and simultaneously cyclized to **573** (R = 2-Cl). Similar processing of the bezisoxazoles **530** (Ar = 2-tolyl, 2-methoxyphenyl, 2-methylthiophenyl, 3-chloro-4-methoxyphenyl, 3,4-dimethoxyphenyl, and 4-chlorophenyl) gave the corresponding **573** (refs^{486,510,524}), most of which were transformed by the action of phosphorus pentasulfide to the corresponding thiones. The 4-chlorophenyl compound **573** is the known benzodiazepine antagonist Ro 5-4864 (ref.⁹²⁶). The phthalimidoacetamido route was also used for the synthesis of 5-(2-fluorophenyl)-1,3-dihydro-1,4-benzodiazepine-2-one⁴⁸⁶, an intermediate of the synthesis of the potent hypnotic agent flunitrazepam⁹²⁷.

5.3 HETEROTRICYCLIC COMPOUNDS

5.3.1 *Heterotricyclic Compounds with Five- and Six-Membered Rings*

5.3.1.1 Dithienothiopyrans, Dibenzothiophenes and Thienobenzothiopyrans

Ethyl 2-bromo-5-ethylthiophene-3-carboxylate was transformed in two steps into 5-ethyl-2-(2-thienylthio)thiophene-3-carboxylic acid which was cyclized with polyphosphoric acid in toluene³⁸⁷ to 2-ethyldithieno[2,3-*b*;3',2'-*e*]thiopyran-4-one (**574**). Reaction with 3-dimethylaminopropylmagnesium chloride gave the expected tertiary alcohol which decomposed in attempts at its dehydration.

Diazotization of 3-amino-2-(phenylthio)benzoic acid²³⁶ gave **575** as one of the products; **576** was obtained similarly⁴³⁰. The acid **575** was better prepared by the Gomberg reaction from 2-(2-aminophenylthio)benzoic acid²³⁷ and was used for the synthesis of amines with spasmolytic, local anaesthetic and hypotensive activities. The dihydroimidazole **577** in low doses had a positively inotropic effect. Cyclization of 2-(2-thienylthio)benzoic acid with polyphosphoric acid afforded thieno[2,3-*b*]-1-benzothiopyran-4-one³¹² giving in two steps **578**, a very potent antihistamine agent in vivo. Similar procedure, starting from 2-(3-thienylthio)benzoic acid, stopped in the stage of the 9*H*-thieno[3,2-*b*]-1-benzothiopyran-9-ol derivative **579** which decomposed in attempts at its dehydration³²⁹.

5.3.1.2 Carbazole, Cyclopent[*g*]isoquinoline and Benz[*c,d*]indole Derivatives

Acylation of carbazole with chloroacetic anhydride and the following reaction with diethylamine gave **580**, an extremely active local anaesthetic⁶⁶. The oxime of *s*-hydrindacene-1-one was subjected to the Beckmann rearrangement with polyphosphoric acid³⁶⁶; the lactam **581** was the major product and the isomer **582** was the minor one. Compound **581** was used for preparing several amines for pharmacological

screening. The benz[*c,d*]indole derivative naphthostyryl (**583**) gave by alkylation **584** having antiserotonin activity²³⁹. Reactions of **583** with primary and secondary amines and titanium tetrachloride afforded cyclic amidines like **585** displaying several peripheral neurotropic activities.

5.3.1.3 β -Carboline Derivatives

Several N-substituted 1,2,3,4-tetrahydro- β -carbolines¹⁴⁵ were prepared as simple reserpine models. Reaction of tryptamine with glyoxylic acid was the entry to a series of 1,2,3,4-tetrahydro- β -carboline derivatives¹⁷¹; the alcohols **586** and **587** displayed weak reserpine-like hypotensive activity. Substituted benzaldehydes were reacted with tryptamine and the resulting Schiff bases were reduced with sodium borohydride to N-benzyltryptamines¹⁹². The Schiff bases were also cyclized to 1-aryl-1,2,3,4-tetrahydro- β -carbolines¹⁹². 1-Phenyl compound was transformed in two steps to **588** which inhibited the formation of the indomethacin-induced gastric ulcers in rats⁵¹⁵. Bischler-Napieralski reactions of N-(cyclohexylacetyl)tryptamine and its 4-methoxy derivative followed by reduction gave 1-(cyclohexylmethyl)-1,2,3,4-tetrahydro- β -carboline and its 4-methoxy derivative¹²⁷ (short-acting hypotensives). Similar reactions starting from N-(arylalkanoyl)tryptamines led to 1-aralkyl-1,2,3,4-tetrahydro- β -carbolines out of which the simple 1-benzyl compound (**589**, phenoharman in the form of the methanesulfonate) was selected for clinical trials for its hypotensive effect in animals¹²⁸. The synthesis of **589** was modified and improved¹⁹⁷, its reserpine-like character of action was confirmed in biochemical as well as pharmacological studies⁹²⁸⁻⁹³⁴. Clinical testing did not confirm the predicted hypotensive action in patients⁹³⁵; on the other hand, it indicated an important central action. Phenoharman was found ineffective in schizophrenia but was found useful in maniodepressive psychoses⁹³⁶⁻⁹³⁸; in some patients its use led to worsening of the humour (dysphoric action). Clinical experimentation in various lines⁹³⁹⁻⁹⁴² continued for some time but finally phenoharman remained interesting only as an agent inducing experimental depression⁹⁴³⁻⁹⁴⁵. Some 1-(aryloxy- or arylthiomethyl)-1,2,3,4-tetrahydro- β -carbolines²²⁵ were prepared as potential analgetics but were found inactive. Attempts to cyclize 4-arylthio-2-methylthiopyrimidine-3-carboxylic acids proceeded under decarbonylation and [1]benzothieno[3,2-*d*]pyrimidines (**590**) were the products³⁴⁷.

5.3.2 Heterotricyclic Compounds with Six-Membered Rings

5.3.2.1 Xanthene, Thioxanthene and Selenoxanthene Derivatives

4-Methoxyxanthone and 4-methoxythioxanthone were transformed in three steps into **591** and **592** which did not show the presumed antidepressant activity⁵¹³. Thioxanthene became a very important pharmacophore through the discovery of the Danish au-

thors⁹⁴⁶ of the neuroleptic action of **593**, especially those substituted in position 2. The synthesis of such compounds started by the easy cyclization of the 2-(arylthio)benzoic acids (mostly with sulfuric acid) to the thioxanthones which were reacted with 3-dimethylaminopropylmagnesium chloride and the tertiary alcohols obtained were dehydrated by acid catalyzed reactions to **593**. In the case of asymmetrically substituted **593**, mixtures of (*E*)- and (*Z*)-isomers were formed which were separated in many cases by crystallization of the bases or of the salts. The neuroleptic activity is stereoselective and only the (*Z*)-isomers are active. Our team contributed significantly to the knowledge of the structural field of neuroleptic activity in this group. First, we synthesized the unsubstituted prothixene (**593**, R = H) (ref.²⁰⁶). It is a strong antihistamine agent and was, therefore, recommended to clinical testing⁹⁴⁷. The assumed activity was confirmed but at the same time the strong sedative activity of prothixene disabled its practical use. Then, the synthesis of chlorprothixene (**593**, R = 2-Cl) was modified and the separation of the geometrical isomers was worked out. Patenting of a new synthetic way²⁰⁶ enabled the introduction of manufacture of this agent in this country (Chlorprothixen-SPOFA[®]) and clinical investigations confirmed its antipsychotic activity in schizophrenic patients⁹⁴⁸. A spectrophotometric (IR) method⁹⁴⁹ enabled the differentiation of the geometrical isomers and the determination of the (*Z*)-isomer in mixtures. Derivatives and analogues of prothixene were found to be inhibitors of the alcohol dehydrogenase³⁷⁰. 3-, 4-, 6- and 7-Hydroxy derivatives of chlorprothixene were synthesized⁴⁰⁰ and used as standards in a metabolic study of chlorprothixene oriented especially to 1st metabolic hydroxylation⁴⁷⁴. A series of 2-alkyl derivatives of prothixene (**593**, R = 2-alkyl) was synthesized²²⁶, some members were separated to isomers and with (*Z*)-2-isopropyl compound the maximum central depressant effect was found. For preparing the 2-cyclopropyl derivative of **593**, the corresponding starting acid had to be cyclized with trifluoroacetic anhydride³¹⁵; the product was of weak activity (probably the (*E*)-isomer). 2-Benzyl derivative of **593** was described together with several 2-alkoxy derivatives²¹⁷. 2-Methoxythioxanthone was demethylated with hydrobromic acid to 2-hydroxythioxanthone opening the way to the 2-benzyoxy derivative of **593** and also to the 2-hydroxy derivative of prothixene (**593**, R = OH) in the form of both isomers²⁵⁸.

Aminoalkyl ethers of 2-hydroxythioxanthone, 2-hydroxyprothixene and also of the intermediate 2-hydroxy amino alcohol were prepared and tested²⁵⁸. 2-(3-Alkylphenylthio)benzoic acids were cyclized with sulfuric acid to mixtures of 3-alkyl (major) and 1-alkyl (minor) derivatives of thioxanthone⁴²⁵ which were separated and which opened the way to 1-ethyl, 3-methyl and 3-ethyl derivatives of prothixene (some sedative and cataleptic activity). In connection with the work in the ring-homologous series (di-benzo[*b,f*]thiepins), the 3-fluoro³⁷², 6-fluoro^{331,359}, 3,6-difluoro³⁷², 7-fluoro³³¹, and 6,7-difluoro³⁵⁴ derivatives of chlorprothixene were prepared. The cataleptic activity was used as an indication of the (*Z*)-configuration (with regard to the position of the side

chain and the 2-chlorophenyl). Some of the fluorinated compounds were strong neuroleptics with prolonged ataxic activity (oral administration). 2-(Bromomethyl)thioxanthone was used for the synthesis of **593** ($R = 2\text{-CH}_2\text{SCH}_3$); the product is a tranquillizer with low cataleptic activity⁴⁶³. 4-Dimethylamino(also pyrrolidino, piperidino and morpholino)thiophenols were synthesized, reacted with 2-iodobenzoic acid and processed to the corresponding 2-amino derivatives of **593** (they are only tranquillizers) (ref.⁴⁸⁹). The 1,2,4-trichloro and 2,4,5,6-tetrachloro derivatives of **593** were prepared only in the form of the inactive (*E*)-isomers⁴⁵⁷.

2-Chloro-9-(1-methyl-4-piperidylidene)thioxanthene was demethylated with ethyl chloroformate, the carbamate was hydrolyzed and the secondary amine obtained was alkylated with 2-bromoethanol to **594** which was shown to be only a low-cataleptic tranquillizer⁴⁵⁷. Thioxanthone and 2-chlorothioxanthone were reacted with 3-(4-phenyl-1-piperidinyl)propylmagnesium chloride and the intermediates obtained were used to prepare the 3-(4-phenyl-1-piperidinyl)propylidene analogues of prothixene and chlorprothixene²²⁷ (the isomer A of the chloro compound is a strong sedative agent). Reaction of thioxanthone with 3,4,5,6-tetrahydro-2*H*-thiopyran-4-ylmagnesium bromide started the synthesis of the sulfonium salt **595** showing only weak antihistamine and anticholinergic effects⁵⁰⁰. Thioxanthene-9-ol was treated with hydrogen chloride in ether and then with piperidine giving the unstable 9-(1-piperidinyl)thioxanthene²⁵⁸ lacking any CNS action. Attempts at cyclizing thioxanthene-9-acetic acid with polyphosphoric acid resulted in an escape reaction³⁸¹: acetic acid was cleaved and the formed thioxanthylum cation was disproportionated into thioxanthone and thioxanthene. Reaction of 2-chlorodibenzo[*b,f*]thiepin or 8,10-dichloro-10,11-dihydrodibenzo[*b,f*]thiepin with acetyl chloride and aluminium chloride led under rearrangement of the skeleton to 2-acetyl-7-chloro-9-(chloromethyl)thioxanthene³⁷⁷. 2-(Arylseleno)benzoic acids were cyclized with sulfuric acid to selenoxanthone and its 2-chloro derivative which were transformed in two steps into **596** and **597**. The mixture of the isomeric bases **597** was separated by seeding with the crystals of the evidently isomeric (*Z*)-chlorprothixene (**593**, $R = 2\text{-Cl}$). In this way (*Z*)-**597** and (*E*)-**597** were obtained, the former having 50% of the ataxic activity of (*Z*)-**593** ($R = 2\text{-Cl}$) (ref.²⁵⁵).

5.3.2.2 Acridine, Benz[*d,e*]isoquinoline, Julolidine, and Methanobenzazocine Derivatives

9,10-Dihydroacridine was aminoalkylated with 2-dimethylaminoethyl chloride and homologues⁶¹ (NaNH_2) and **598** was found to be in vitro seven times as active as **111** as an antihistamine agent. Acylation of dihydroacridine with chloroacetyl chloride and the following treatment with diethylamine gave⁶⁶ the potential local anaesthetic **599**.

3-Methyl-7,8,9,9a-tetrahydro-1*H*-benz[*d,e*]isoquinoline was reduced with sodium borohydride to **600** which was alkylated with propargyl bromide to **601**, a cyclic ana-

logue of the monoamine oxidase inhibitor pargyline⁷⁸². Treatment of **600** with phenylacetyl chloride followed by reduction with lithium aluminium hydride gave an unexpected product identified as **602** (N-dealkylation with the acid chloride, N-acylation, reduction and hydrogenolysis) (ref.⁴⁷⁹).

Under the guidance of Prof. V. Prelog (Zurich), the author²² hydrogenated julolidine on the Adams catalyst and the mixture of the hexahydro bases **603** was separated by fractional crystallization of the picrates; the main **603-A** and the minor **603-B** were obtained and characterized. Using a different way, Leonard⁹⁵⁰ prepared a hexahydrojulolidine which gave evidence of resolution, is therefore the *cis-trans*-isomer and is identical with one of our stereoisomers⁹⁵¹. Hydrogenation of julolidine was repeated by further authors⁹⁵². Attempt to nitrosate julolidine to position 9 by treatment with nitrous acid led to C₂₄H₂₈N₂, identified as **604** (ref.⁸⁷). 9-Methoxyjulolidine was demethylated with hydrobromic acid to 9-hydroxyjulolidine which was transformed to basic ethers **605** showing indications of antidepressant activity with some selectivity in favour of the adrenergic mechanism⁵⁶⁰.

1,2,3,4,5,6-Hexahydro-2,6-methano-3-benzazocine (6,7-benzomorphan) is an important part of the morphine molecule and its N-substituted 8-hydroxy-6,11-dimethyl derivatives exhibit strong morphine-like analgetic activity. We alkylated this basic hydroxydimethyl compound with 2-(2-chloroethyl)-1,3-dioxane and 2-(2-chloroethyl)-1,3-dioxolane⁵⁴⁴ and obtained **606** out of which **606** (n = 1) had 25 % of the morphine activity in the Haffner test (collision with ref.⁹⁵³).

5.3.2.3 Thianthrene, Phenothiazine, 11*H*-Pyrido[2,3-*b*]quinazoline, and [1]Benzothiopyrano[3,2-*d*]pyrimidine Derivatives

Thianthrene (**607**) was obtained as one of the products of cyclization of 2-(2-bromo-phenylthiomethyl)thiophenol⁴³⁰ with potassium carbonate and copper in dimethyl-formamide. The 3,8-dichloro derivative **608** was isolated as the by-product of the reaction of 4-chloro-2-fluorothiophenol with 2-chlorobenzaldehyde in hexamethylphosphoric triamide in the presence of sodium hydroxide at 100°C (ref.⁴⁶⁹). Our involvement in the very productive phenothiazine series was limited. Acylation of phenothiazine with 3-chloropropionyl chloride and following reactions with sodium methanethiolate and then methyl iodide gave the sulfonium salt **609** displaying some spasmyolytic activity¹²⁹. Phenothiazine and 2-chlorophenothiazine were alkylated with 3-(4-phenyl-1-piperidinyl)propyl chloride giving **610** (ref.²²⁷); compound **610** with R¹ = Cl was a long-acting central depressant agent. The synthesis of pecazine (**611**, Pacatal[®]) was described¹²⁶ in a time when only its biological properties have been published⁹⁵⁴; its pharmacology was verified and it was found that its central effects are much weaker than those of chlorpromazine. Modified syntheses of the mild neuroleptic agent thioridazine⁹⁵⁵ (**612**) and of the antiemetic agent metopimazine⁹⁵⁶ (**613**) were describ-

ed⁵⁴⁹. The new syntheses utilized fluorinated aromatic intermediates and the nucleophilic displacement reactions of the aromatic fluorine atom activated by the *o*-standing sulfur atom (sodium hydride as the reagent).

The by-product of the reaction sequence starting from 5,11-dihydro-6*H*-pyrido[2,3-*b*]-1,4-benzodiazepin-6-one⁵¹⁴ and proceeding by treatment with chloroacetyl chloride followed by 1-methylpiperazine, which was isomeric with the main and expected product (pirenzepine⁹⁰¹), was surprisingly identified (X-ray, NMR) as 11*H*-pyrido[2,3-*b*]quinazolin-11-one (**614**) (ref.⁵²⁶) (transacylation, recyclization, double bond and hydrogen shift, and finally nucleophilic substitution with methylpiperazine). Cyclization of 2-(methylthio)-5-(phenylthio)pyrimidine-4-carboxylic acid chloride³⁴⁷ with aluminium chloride gave the desired 2-(methylthio)-[1]benzothiopyrano[3,2-*d*]pyrimidine-10-one (**615**); attempts at its transformation to the prothixene analogue were unsuccessful.

5.3.3 Heterotricyclic Compounds with Seven-Membered Rings

5.3.3.1 Benzocycloheptathiophenes

9,10-Dihydrobenzo[4,5]cyclohepta[1,2-*b*]thiophene derivatives **616** and **617** are the very important antimaigraine agent pizotifen⁹⁵⁷ and the antiasthmatic ketotifen⁹⁵⁸. Our synthesis of their sulfonium analogues **619** and **620** (proved pharmacologically not interesting) (ref.⁵³⁷) led us closer to the chemistry of **617**. Some new possible intermediates were prepared and the last stages of the synthesis were slightly modified. Moreover, the chirality of ketotifen (**617**), which was indicated by isotachophoretic study⁹⁵⁹, was proven by ¹H NMR spectroscopy. The resolution of racemic **617** was achieved by crystallization of salts with optically active O,O'-diacyltartaric acids. The X-ray crystallographic analysis of (+)-**617** (−)-O,O'-di(*p*-toluoyl)-(R)-tartrate led to the three-dimensional structure of the molecule of (+)-ketotifen and to determination of the (R) absolute configuration. This enantiomer was found to be the more active ketotifen enantiomer but the stereoselectivity of its action is only a partial one. One of the products of bromination of 9,10-dihydrobenzo[4,5]cyclohepta[1,2-*b*]thiophene-4-one was used to realize the synthesis of **618** which is much less active than **617** in the line of antihistamine activity. Reaction of 9,10-dihydrobenzo[4,5]cyclohepta[1,2-*b*]thiophene-4-one with 3,4,5,6-tetrahydrothiopyran-4-yl magnesium bromide gave in addition to the expected tertiary alcohol compound **621**, evidently the product of 1,6-addition and the following spontaneous dehydrogenation⁵³⁷.

The isomeric benzo[5,6]cyclohepta[1,2-*b*]thiophene system was attacked only by our team²⁴⁸. Cyclization of (2-(2-phenyl)phenyl)acetic acid with phosphorus pentoxide in toluene afforded **622** which was transformed via the secondary alcohol to the 4-chloro compound. The final substitution reaction with 1-methylpiperazine gave 10*H*-

benzo[5,6]cyclohepta[1,2-*b*]thiophene as the main product (product of elimination) and **623** which proved to be a chlorpromazine-like neuroleptic agent²⁴⁸.

5.3.3.2 Dibenzoxepin Derivatives

Dibenz[*b,e*]oxepin-11(6*H*)-one was reduced to the secondary alcohol which was transformed on the one hand to the ether **624**, and to **625** on the other²²⁴. The piperazine derivative **625** displayed antireserpine and central anticholinergic activity.

Cyclizations of 2-(4-substituted phenoxy)benzoic acids with polyphosphoric acid resulted in dibenz[*b,f*]oxepin-10(11*H*)-ones **626** (*R* = H, CH₃, Cl, OCH₃, SCH₃) which were transformed in three steps into the neuroleptically active **627** and **628** with the most active combinations **627** (*R* = SCH₃) and **628** (*R* = Cl) (ref.²⁵¹). The similarly prepared 8-methyl-10-(4-(2-hydroxyethyl)-1-piperazinyl) analogue was transformed to esters²⁹² **629** (*n* = 8, 12) which were tested as potential depot neuroleptic agents. The enamine **630** was obtained from the ketone **626** (*R* = H) by treatment with 1-methylpiperazine and titanium tetrachloride in benzene²⁵⁷. The series of 10-piperazino-10,11-dihydrodibenzo[*b,f*]oxepins as potential neuroleptics was studied also by the teams of Hoffmann – La Roche and Rhone – Poulenc which was demonstrated only by patents.

5.3.3.3 6,11-Dihydrodibenzo[*b,e*]thiepin Derivatives

The fact that we lost the priority with amitriptyline (**363**) led us to investigate the 6,11-dihydrodibenzo[*b,e*]thiepin derivatives which are isosteric with the 10,11-dihydrodibenzo[*a,d*]cycloheptenes. We were not able to cyclize 2-(S-benzylthio)benzoic acid with polyphosphoric acid but its anhydride gave with aluminium chloride some **631** (*R* = H). It was found much better to cyclize 2-(phenylthiomethyl)benzoic acid (obtained by reaction of phthalide with the sodium salt of thiophenol) giving **631** (*R* = H) with high yield¹⁷⁹. The following reaction with 3-dimethylaminopropylmagnesium chloride (cf. also ref.⁴⁶⁸) resulted in **636** (*R* = H) (refs.^{179,467}) which was dehydrated by an acid catalyzed reaction to **632** (*R* = H).

This compound (prothiadene, dosulepin (INN), dothiepin (British approved name)) was found to have a suitable combination of antireserpine and central depressant activities⁹⁶⁰⁻⁹⁶⁵ and was recommended to clinical trials. Our preliminary communication on prothiadene¹⁷⁹ was followed by reports of the teams of Boehringer – Mannheim^{966,967} and of Sandoz⁹⁶⁸ (cf. also ref.⁹⁶⁹) on the same compound but our team was the only one which brought prothiadene to stages of clinical testing and practical use. The double bond in **632** (*R* = H) and the asymmetry of the molecule gives the precondition for the existence of (*Z*)- and (*E*)-isomers. The product obtained by dehydration consists at least by 90% of one isomer which was isolated homogeneous and proved to be the (*E*)-isomer (IR spectra²⁴⁹, X-ray crystallographic study⁹⁷⁰, ¹H NMR⁵⁰¹). The

reason of such predominance of the (*E*)-isomer is probably the conformation of the intermediate carbocation **638** in which the N and also the S atom are protonated and repulsion of the positive charges leads to preference of formation of the (*E*)-isomer by stabilization of **638** by loosing a proton. The demethylation of crude **632** (R = H) via **633** (R = H) to northiadene (**634**, R = H) gave a mixture containing more of the (*Z*)-isomer which enabled the preparation of homogeneous (*Z*)-**632** (R = H) (refs^{249,501}). Also the application of the Wittig synthesis to **631** (R = H) led to mixtures out of which chromatography separated the homogeneous (*Z*)-prothiadene⁵⁰¹.

After a series of positive clinical results (mainly in various forms of mental depression) (refs⁹⁷¹⁻⁹⁸⁶), the agent was introduced by SPOFA to practical use^{987,988} (Prothiadene[®]). Later the drug was licensed first to Crookes Laboratories (U.K.) and then to Boots Company (U.K.) and more recently also to Kaken Pharmaceuticals (Japan). The cooperation with these companies multiplied the published information on prothiadene in all directions (cf. e.g. special symposia⁹⁸⁹⁻⁹⁹² in Moscow (1972), Paris (1974), Prague (1977) and Vienna (1978)). Many of the published reports on prothiadene deal with modifications of the last stages of the synthesis⁹⁹³⁻¹⁰⁰³, various methods of analytical determination in preparations and biological material including the differentiation of the isomers¹⁰⁰⁴⁻¹⁰¹⁷, biochemical effects¹⁰¹⁸⁻¹⁰²⁴, biochemical pharmacology¹⁰²⁵⁻¹⁰³⁵, general pharmacology¹⁰³⁶⁻¹⁰⁴², pharmacokinetics¹⁰⁴³⁻¹⁰⁵¹, stability¹⁰⁵²⁻¹⁰⁵⁴, electrophysiology and electroencephalography¹⁰⁵⁵⁻¹⁰⁵⁹, influence on reproduction¹⁰⁶⁰⁻¹⁰⁶⁴, toxicology, side effects in men and intoxications¹⁰⁶⁵⁻¹⁰⁸⁴, interactions with other drugs¹⁰⁸⁵⁻¹⁰⁸⁷, clinical trials in depression including comparative studies¹⁰⁸⁸⁻¹¹²⁷, clinical trials in neurology and other medical lines¹¹²⁸⁻¹¹⁴⁶, for monographic articles on prothiadene, cf. refs¹¹⁴⁷⁻¹¹⁴⁹. A combination of prothiadene with mebromophenhydramine (**213**) was introduced as an antihistaminic with antidepressant and hypnotic activity¹¹⁵⁰⁻¹¹⁵³ (Prothidryl[®]). The pharmacokinetics^{1043-1059,1154} and metabolism of prothiadene^{1047,1155-1161} were investigated in several animal species and humans partly with [³⁵S]labeled prothiadene. Making use of synthetic northiadene (**634**, R = H) (refs^{200,249}), dinorthiadene (**635**, R = H) (ref.³⁸⁶) (prepared from **631** (R = H) via the 11-cyclopropyl carbinol, (*E*)-11-(3-bromopropylidene) compound, the corresponding phthalimido compound and its hydrazinolysis), S-oxides of prothiadene and northiadene^{200,249} (prepared by oxidation of the sulfides with hydrogen peroxide in acetic acid), and 2-hydroxy derivative of prothiadene (**632**, R = 2-OH) (ref.³⁸⁶) (was prepared in the form of both homogeneous geometrical isomers from **631** (R = 2-OCH₃) via **632** (R = 2-OCH₃) and by its demethylation with boron tribromide or hydrobromic acid) as standards, the named compounds were identified as urine metabolites. There was an indication that also the N-oxide of prothiadene could be a metabolite^{1156,1157} but attempts at its synthesis by oxidation of **632** (R = H) with hydrogen peroxide in neutral solutions proceeded under Cope elimination and afforded 11-allylidene derivatives of 6,11-dihydronaphthalene-2,6-dione and -S,S-dioxide³⁸⁶. Japanese au-

thors¹¹⁶⁰ established in urine of humans the presence of two conjugated metabolites, derived from prothiadene and northiadene, which were identified as the quaternary ammonium-linked glucuronide and the corresponding tertiary N-glucuronide.

A series of nuclearly substituted derivatives of prothiadene (632) was prepared by the general route mentioned, i.e. starting from substituted thiophenols and phthalide (or substituted phthalides) via the 2-(arylthiomethyl)benzoic acids, 631 and 636. The following prothiadene derivatives (632) were prepared: 2-methyl, 2-ethyl, 2-isopropyl, and 2-butyl^{180,969}, 2-fluoro (separated to geometrical isomers), 2-chloro, and 2-bromo^{180,960}, 3-methoxy²⁹⁰, 3-chloro and 3-bromo^{200,1162}, 4-methyl^{180,960}, 3,8-disfluoro²³⁰ (with high anticonvulsive activity⁴²⁸), 9-fluoro⁴²⁸, 9-chloro¹⁸⁰, 9-bromo⁵²¹ (separated to (E) and (Z)-isomers), 2,9-disfluoro⁴²⁸, and 2,9-dichloro^{180,960}. (E)-2-Bromo compound (632, R = 2-Br) was transformed by treatment with cuprous cyanide in hexamethylphosphoric triamide⁵²¹ to the (E)-2-cyano compound (632, R = 2-CN) (was obtained also from 631 (R = 2-Br) via 631 (R = 2-CN) and 636 (R = 2-CN)) which was found to be a selective inhibitor of 5-hydroxytryptamine re-uptake in the brain and is thus a potential antidepressant. Compound (E)-632 (R = 9-Br) was similarly transformed to (E)-632 (R = 9-CN) (ref.⁵²¹).

Out of all of these compounds (632), the 2-methyl derivative (methiadene, medosulepin (Czech. Pharmacopoeia)) was found most interesting because of its high anti-histamine activity, acceptable toxicity, good water-solubility of the hydrochloride and stability of the aqueous solution^{180,260}. The problem of its geometrical isomerism was solved²⁴⁷, the (E)-isomer was again found as the major one and it was oxidized to the S-oxide and S,S-dioxide²⁴⁷. Some analytical, biochemical and pharmacological papers deal with methiadene^{1006,1008,1163,1164}. It was introduced in injections in combination with calcium glucoheptonate (Methiadene-Calcium[®]) and it has been used until now in the treatment of allergic states of various origin^{1165,1166}. Its successful use was reported in many papers¹¹⁶⁷⁻¹¹⁷⁸.

The transformation of 632 (R = H) to northiadene (634, R = H) via the carbamate²⁰⁰ was already mentioned. The same product was also obtained from 636 (R = H) via the carbamate, its hydrolysis and dehydration²⁴⁹. Northiadene was prepared in the form of both geometrical isomers which could be methylated to the corresponding prothiadenes (632, R = H) (refs^{249,501}). The following Ar-substituted northiadenes (634) were prepared: 2-methyl²⁴⁷ (both geometrical isomers), (E)-2-bromo (was transformed in three steps to (E)-2-cyano⁵²¹), and 3-methoxy²⁹⁰. (E)-Northiadene (634, R = H) proved also high antireserpine activity^{965,1036,1162} and a general pharmacological profile differing somewhat from that of prothiadene¹¹⁷⁹⁻¹¹⁸¹. It was also clinically tested in mental depressions with positive results and was found rather similar to prothiadene¹¹⁸²⁻¹¹⁸⁶. (E)-Northiadene (634, R = H) was alkylated and the products were eventually further transformed to a series of products⁴⁴⁴. The lipophilic ester 639 was

tested as a depot antidepressant with a completely negative result⁴⁴⁴. The treatment of (*E*)-northiadene with 4-chlorophenacyl bromide gave **640**, an analogue of lofepramine¹¹⁸⁷, which was found less active than prothiadene⁵¹⁹. Chloroacetylation of **634** (R = H) and the following reaction with 1-substituted piperazines gave compounds like **641**, potential anti-ulcer agents⁵³¹.

Side-chain modified analogues of prothiadene were prepared from **631** (R = H) by using the following Grignard reagents : 3-(1-piperidinyl)propylmagnesium chloride, 2-(1-methyl-2-piperidinyl)ethylmagnesium chloride, 1-methyl-3-piperidinylmethylmagnesium chloride, 3-(4-methyl-1-piperazinyl)propylmagnesium chloride¹⁸³, and 3-(4-phenyl-1-piperidinyl)propylmagnesium chloride²²⁷ - and by the final dehydration of the alcohols obtained. Reaction of **631** (R = H) with 2-(dimethylaminomethyl)cyclohexylmagnesium chloride gave a mixture (**642**, R = H) out of which four homogeneous bases were separated by chromatography. Dehydration of the main component gave **646** (R = H) for which (*E*)-configuration was presumed⁴⁷⁷. Reactions of **631** (R = H) with 2-, 3- and 4-(dimethylaminomethyl)phenylmagnesium bromide gave **643** (R = H) (ref.⁵³⁹). Treatment of the 2-isomer with phosphoric acid proceeded with extrusion of sulfur⁵³⁹ and led to **652**. Reactions of **631** (R = H, 2-Cl, 2-Br, 2-Cl-8-F) with 1-methyl-4-piperidinylmagnesium chloride gave the corresponding **644** (refs^{183,455,521,531}). In the case of **644** (R = H), a by-product was isolated⁵³¹ and identified as the product of 1,6-addition and the following spontaneous dehydrogenation, i.e. **653** (R = H). Dehydration of **644** gave the corresponding **647** (R = H, 2-Cl, 2-Br, 2-Cl-8-F) out of which perthiadene (**647**, R = H) is practically equipotent with prothiadene in its antireserpine, antihistamine and sedative activities⁹⁶⁰; it was the object of further pharmacological studies¹¹⁸⁸⁻¹¹⁹⁰. Demethylation of **647** (R = H) by the ethyl chloroformate method and final hydrolysis gave **648** (R = H) which was chloroacetylated and the product subjected to substitution reactions with 1-substituted piperazines⁵³¹; the products were potential anti-ulcer agents.

Similar demethylation⁴⁵⁵ of **647** (R = 2-Cl) gave **648** (R = 2-Cl) which was converted via **649** (R = 2-Cl) to the corresponding decanoate. This compound - instead of being a depot neuroleptic agent - showed dopaminomimetic character: it potentiated the effects of apomorphine, had anticataleptic activity and decreased the level of homovanillic acid in corpus striatum of the rat brain. The 2-chloro-8-fluoro compound **647** had only properties of a tranquillizer⁴⁵⁵. Compound **647** (R = 2-Br) was converted by treatment with cuprous cyanide in hexamethylphosphoric triamide to **647** (R = 2-CN) (ref.⁵²¹). Reactions of **631** (R = H and 2-CH₃) with 3,4,5,6-tetrahydro-2*H*-thiopyran-4-ylmagnesium bromide afforded mixtures of **645** (R = H and 2-CH₃) and **654** (R = H and CH₃). Dehydration of the former and addition of methyl iodide gave **650** (R = H and 2-CH₃) which were free of the central effects and had only low antihistamine activity⁵⁰⁰. Compound **651** (R = 2-Cl) was synthesized⁴⁵⁸ as an analogue of the neuroleptic (*Z*)-pinoxepin¹¹⁹¹ from **631** (R = 2-Cl) via the cyclopropyl carbinol

and the (*E*)-11-(3-bromopropylidene) compound. Our product (**651**, R = 2-Cl), being the (*E*)-compound, is inactive as a neuroleptic agent and its decanoate has neither properties of a depot neuroleptic, nor of a depot antidepressant.

Ketones **631** were reduced with sodium borohydride to **655** (R = H, 2-CH₃, 2-Br, 3-OCH₃) (refs^{179,247,290,521}) which were transformed to **656** (R = H, 2-Br) by the action of hydrogen chloride or thionyl chloride^{215,521}. 11-Unsubstituted compounds **657** (R = H, 2-CH₃, 3-OCH₃) were prepared by reduction of **655** with hydroiodic acid²⁰⁰ or of **631** and their oximes with zinc and acetic acid^{215,290,391}. Compounds **655** – **657** were used as intermediates for further synthetic work. Reduction of **636** (R = H) or of **632** (R = H) with hydroiodic acid^{200,215} gave hydrothiadene (**637**, R = H) which was also obtained by reaction of **656** (R = H) with 3-dimethylaminopropylmagnesium chloride²¹⁵. Similar methods resulted in Ar-substituted derivatives **637** (R = 2-F, 2-Cl, 2-Br, and 2,9-Cl₂). Hydrothiadene was found to have similar antireserpine activity like prothiadene¹¹⁶² which led to its more detailed pharmacological studies^{1188-1190,1192-1194}. An attempt to resolve racemic hydrothiadene by isotachophoresis with β -cyclodextrine was reported¹¹⁹⁵. Clinical trials confirmed similarity of hydrothiadene with prothiadene in depressive states¹¹⁹⁶⁻¹¹⁹⁹. A compound of elemental composition corresponding to **637** (R = 2-CH₃) was obtained by alkylation of **657** (R = 2-CH₃) with 3-dimethylaminopropyl chloride (sodium amide) but the position of the side chain is uncertain³⁹¹. 2-Bromo-**637** was transformed by cuprous cyanide to the 2-cyano analogue **637** (R = 2-CN) which is a strong and selective inhibitor of 5-hydroxytryptamine re-uptake in the brain and has antireserpine activity like a potential antidepressant⁵²¹. Demethylation of hydrothiadene by the ethyl chloroformate method resulted in norhydrothiadene (**658**, R = H) (ref.²¹⁵, collision with Merck¹²⁰⁰) which is a further potential antidepressant¹¹⁹²⁻¹¹⁹⁴. Compounds **651** (R = H, 2-Cl) were reduced with hydroiodic acid giving unhomogeneous products from which crystallization of the salts afforded **659** (R = H, 2-Cl) (ref.⁴⁵⁸).

Reduction of **632** and **636** is in general an unclean reaction complicated by the cleavage of the CH₂ – S bond. This type of reduction of **644** (R = H) gave an insight into the proceeding reeactions⁵³⁸; the primary product was **647** (R = H) which was cleaved and recyclized affording the spiro(benzol[b]thiophene-2(3H),4'-piperidine) derivative **660** (NMR). The sulfone **661**, obtained by oxidation of **657** (R = H), gave by alkylation with 3-dimethylaminopropyl chloride²⁵⁰ (sodium hydride) the sulfone related to hydrothiadene (**662**) having important antihistamine activity in vivo.

N-(Ethoxycarbonyl) derivative of **658** (R = H) was chlorinated with N-chlorosuccinimide, the product was reacted in situ with phenylmagnesium bromide and then reduced with lithium aluminium hydride giving **664** (ref.⁵³⁸). Prothiadene (**632**, R = H) S-oxide gave by the Pummerer reaction (heating with acetic anhydride) the 6-acetoxy derivative **665** which had no CNS activity²⁶⁴. The sulfone **663** gave by aminoalkyla-

tion²⁵⁰ (sodium hydride) compound **666** ($X = SO_2$) which was reduced to the alcohol **667** ($X = SO_2$) (two racemates isolated). Aminoalkylation of the 11-methyl derivative of **657** ($R = H$) with 3-dimethylaminopropyl chloride (butyllithium) gave **668** ($X = S$) as a mixture of stereoisomers⁵³⁸.

Reactions of **655** with the corresponding alkyl chlorides (sodium hydride or sodium amide) and of **656** (or tosylates of **655**) with the corresponding alcohols gave ethers. Compounds **669** and **670** ($R = H$) had important antihistamine activity^{200,1162}, their N-benzyl quaternary salts²⁵⁰ had spasmolytic and mydriatic activity. Reaction of **655** ($R = H$) with excessive 3-dimethylaminopropyl chloride (sodium amide) gave a product with two side chains³⁹¹, identified as **677**. The 1-methyl-4-piperidinyl ethers **671** ($R = H, CH_3$) (ref.⁴⁹⁰) and the 3-quinuclidinyl ethers **672** ($R = H, CH_3, Cl, Br$) (ref.⁵¹⁸) displayed important antireserpine, anticataleptic and antihistamine activities. The ether **673** ($R = H$) cleaved on treatment with methyl iodide⁵⁰⁰ and gave 4-hydroxy-1-methyl-3,4,5,6-tetrahydro-2*H*-thiopyranium iodide. The aromatic ethers **674** ($R = H, Br$) are very acid-sensitive and are cleaved to **655** (ref.⁵⁵²). Reactions of **655** ($R = 2-Cl, 2-CH_3$) with 2-bromoethanol in the presence of sulfuric acid gave **675** ($R = Cl, CH_3$) which were subjected to substitution reactions with N-substituted piperazines⁴⁵⁹ giving products like **676** ($R = Cl, CH_3$).

Compound **656** ($R = H$) was transformed via the isothiuronium salt³⁹¹ to the thiol **678** whose sodium salt was aminoalkylated giving **679** ($n = 2, 3$) which displayed significant antispasmodic and local anaesthetic activities. The aromatic sulfides **680** were prepared from the new 2-, 3- and 4-(dimethylaminomethyl)thiophenol⁵⁵² and were found to be devoid of antireserpine activity.

Substitution reactions of **656** with secondary amines gave the corresponding tertiary amines out of which especially the piperazines **681** ($R = H$) (ref.²¹⁵), **682** ($R = Cl$) (ref.⁴⁵⁸) and **683** ($R = H$) (ref.⁴⁵⁹) have properties of potential antidepressants. Reaction of **656** ($R = H$) with 1-(ethoxycarbonyl)piperazine⁵¹⁶ gave the substitution product which was hydrolyzed to **684** ($R = H$) and this was alkylated with 1-(3-chloropropyl)-1,3-dihydro-2*H*-benzimidazole-2-one to **685** ($R = H$), an analogue of oxatomide¹²⁰¹, having in the test of passive cutaneous anaphylaxis in rats similar activity like the prototype⁵¹⁶.

Compounds like **686** were prepared by substitution reactions of **656** with the corresponding amines^{215,523}; compound **686** ($R = CH_3$) had antihistamine and antireserpine activity. Substitution reactions of **656** ($R = H$) with 2-, 3- and 4-(dimethylaminomethyl)aniline⁵⁵² gave the inactive **687**. On the other hand, the substitution products **688** ($R = H, CH_3$), obtained from **656** and 4-(2-dimethylaminoethoxy)aniline⁵⁵², displayed activity in several tests considered indicative of antidepressant effect.

Compound **689** was prepared on the one hand by bromination of **661**, and by reaction of **655** ($R = H$) S,S-dioxide with hydrobromic acid²⁵⁰ on the other, and was trans-

formed to **690**. The primary amine **691** was first obtained²¹⁵ from **656** via the phthalimide derivative and much better from **692** by heating with 2-aminoethanol to 170°C (ref.⁴⁰²). The urea derivative **693** was obtained by the same reaction at 130°C. Compound **694** was obtained from **691** and benzyl isocyanate⁴⁰². Chloroacetylation of **691** and the following reactions with amines gave compounds like **695** (ref.⁵²³). Reaction of **691** with ethyl chloroacetate and the following hydrolysis gave **696** (ref.⁵²³). Compounds **693**, **694** and the amide of **696** displayed some anticonvulsant activity.

An attempt at carrying out the Leuckart reaction with **631** ($R = H$) led under extrusion of sulfur and involvement of formic acid or formamide to **697** which was also prepared by Leuckart reaction of 10-methylenanthrone⁴⁰². Compound **698** reacted with amines (with piperidine in the first line) in a surprising manner : mixtures of two isomers were formed which were separated and identified as compounds like **699** and **701** (ref.⁴²⁷). A similar course had also the reaction of **698** with 3-dimethylaminopropyl-magnesium chloride; **700** and **702** were isolated and identified (NMR).

Reaction of **657** ($R = H$) with acetyl chloride and aluminium chloride gave an acetyl compound²⁹⁷ which was identified as **703**. Its Willgerodt reaction led via the thiomorpholide to the acid **704** which displayed antiinflammatory activity in several tests. Reactions of **631** ($R = H, 2\text{-Br}$) with methoxymethylmagnesium chloride gave the corresponding alcohols which were dehydrated and hydrolyzed to the aldehydes **705** (refs^{386,539}). Compound **705** ($R = H$) was reduced to **706** ($R = H$). The oxime of **705** ($R = H$) was dehydrated to the nitrile **707** ($R = H$) which was previously²¹⁵ obtained in a poor yield from **656** ($R = H$) and silver cyanide. The best method for preparing nitriles **707** ($R = H, 2\text{-CH}_3, 2\text{-Cl}, 2\text{-Br}$) was found in the reaction of the corresponding **656** with trimethylsilyl cyanide in the presence of stannic chloride⁵⁴¹. Hydrolysis of **707** ($R = H$) gave the acid **708** ($R = H$) which was transformed to the amide **709** ($R = H$) (ref.⁴⁴⁴), having some anticonvulsant activity like the analogous cyheptamide¹²⁰². The chlorides **656** ($R = H, 4\text{-OCH}_3$) were transformed by the malonic ester synthesis to the acids **710** ($R = H, 4\text{-OCH}_3$) (refs^{391,434}) which were transformed by the Curtius degradation to the amines **711** ($R = H, 4\text{-OCH}_3$) and further to the N-methylated homologues **712** and **713** which displayed antireserpine and anticataleptic activities like potential antidepressants⁴³⁴. The amine **711** ($R = H$) was transformed in two steps⁵²³ into **714**, a potential anti-ulcer agent. Heating the nitriles **707** ($R = H, 2\text{-CH}_3, 2\text{-Cl}, 2\text{-Br}$) with ethylenediamine monotosylate resulted in the dihydroimidazoles **715** which have clear properties of potential antidepressants⁵⁴¹.

Reactions of **705** ($R = H, 2\text{-Br}$) with 2-, 3- and 4-(dimethylaminomethyl)phenylmagnesium bromide gave the secondary alcohols **716** whose oxidation to the corresponding ketones was attempted in many ways. Only in one case the oxidation with tetrabutylammonium chromate in chloroform was successful⁵³⁹ and **717** ($R = H$) was obtained; it was accompanied by **657** ($R = H$) and **718**. The formation of **657** and the

aldehydes **719** in similar cases was found to be a general reaction and was explained as a strange case of the retro-ene reaction⁵³⁹. The ketone **717** ($R = H$) showed a mild potentiation of yohimbine toxicity in mice and thus an indication of the antidepressant profile.

The nitrile **707** ($R = H$) was aminoalkylated⁴⁴⁶ (sodium hydride) to **720** ($n = 2, 3$). Alkaline hydrolysis of **720** ($n = 2$) gave the amino acid **724** as the minor product and **725** as the major one⁴⁴⁶. Alkylation of **707** ($R = H$) with 1,2-dibromoethane and 1,3-dibromopropane in the presence of sodium hydride gave **721** ($n = 2, 3$) (ref.⁴⁴⁶). Their reactions with 4,4-disubstituted piperidines, especially with norpethidine (**487**), gave products like **722** which are analogues of diphenoxylate¹²⁰³ and proved similar anti-diarrhoic activity⁴⁸². An attempt to alkylate **707** ($R = H$) with 1,2-dibromoethane in the presence of sodium hydroxide or potassium carbonate and benzyltriethylammonium chloride⁴⁴⁶ gave **723** and an isomeric by-product which was identified⁵⁰⁴ by NMR spectra and by the X-ray crystallographic study¹²⁰⁴ as 11,12-dihydro-6*H*-6,12-methanodibenzo[*b,f*]thiocin-12-carbonitrile (cf. **997**). An attempt to reduce **723** with lithium aluminium hydride led surprisingly to **635** ($R = H$) (some strange allylic rearrangement must have been involved) (ref.⁵⁰⁴).

Reactions of **631** ($R = H, CH_3$) with vinylmagnesium bromide and the following treatment with hydrobromic acid gave **726** ($R = H, CH_3$) which were transformed via **727** to the acids **728** ($R = H, CH_3$); these were oxidized to sulfoxides and sulfones⁵⁰¹. All of these acids are potential metabolites of prothiadene and methiadene (**632**, $R = H, 2-CH_3$). The acid **728** ($R = H$) was transformed to the dimethylamide which was reduced with lithium aluminium hydride giving (*E*)-**632** ($R = H$) which determined the configuration on the double bond in **728**. The ketone **631** ($R = 2-CH_3$) reacted with 2-(diethylamino)ethylamine in the presence of titanium tetrachloride³⁹¹ giving the imine **729** which had strong central depressant activity. The ketone **631** ($R = 4-OCH_3$) was demethylated with pyridine hydrochloride to **631** ($R = 4-OH$) which was transformed⁵²⁸ to the ether **730** (indications of antidepressant-like activity).

Treatment of the ketones **631** ($R = H, 2-F$) with sodium hydride, the following methylation and hydrolysis proceeded under extrusion of sulfur and the anthracenes **731** – **733** together with anthraquinones were the products⁵³¹.

5.3.3.4 Dibenzo[*b,f*]thiepin Derivatives

Our work in this series was the most extensive one; it started in 1964 and lasted until the end of the author's scientific career, i.e. more than for twenty years. The first stage of the medicinal chemistry of dibenzo[*b,f*]thiepins was reviewed³⁵⁷ in 1977 (cf. also ref.¹²⁰⁵). The more recent work was never reviewed. The present overview enables only to refer to all publications and patents of our team in this field but it is impossible to give details and to refer to publications of other teams. The cause of our concentration

to this series was the fact that we found the dibenzo[*b,f*]thiepin system to be the most favourable pharmacophore in the series of neuroleptic agents; it was especially the combination of this system with piperazine^{219,162} and for this reason I find advisable to start with this type which will not completely correspond to the chemical system.

The entry to the series are ketones 734 which are mostly obtained by cyclization of the (2-(arylthio)phenyl)acetic acids with polyphosphoric acid. The synthesis of the starting acids consisted in most cases in reactions of 2-halobenzoic acids with thiophenol and its Ar-substituted derivatives, in the following reduction of the 2-(arylthio)benzoic acids to alcohols with lithium aluminium hydride, sodium dihydridobis(2-methoxyethoxy)aluminate or with diborane, the following transformation of the alcohols to 2-(arylthio)benzyl chlorides with thionyl chloride and then to nitriles which are hydrolyzed. In some cases the Willgerodt reaction of the 2-(arylthio)acetophenones proved useful. The ketones are reduced with sodium borohydride to 735 which are converted by the action of hydrogen chloride to 736, very reactive components in substitution reactions. These reactions with 1-methylpiperazine give 737 which are formed together with dibenzo[*b,f*]thiepins 738 as elimination products. Another important reaction is the formation of enamines 739 by reactions of 734 with 1-methylpiperazine in the presence of titanium tetrachloride.

The first compound, which was synthesized by the mentioned procedure, was perathiepin (737, R = H) (refs^{207,220}). It was shown to have an extremely high atactic activity (higher than chlorpromazine), inhibiting effect on the spontaneous locomotor activity, hypothermic, antihistamine, and antiserotonin activity¹²⁰⁶⁻¹²⁰⁸. This finding indicated for perathiepin neuroleptic activity which led to its clinical testing in this line¹²⁰⁹⁻¹²¹²; there were surprising cases of therapeutic success in schizophrenics but most of the patients did not respond to perathiepin and the testing was stopped. Some biochemical and physiological papers¹²¹³⁻¹²¹⁵ deal with perathiepin. For preparing the metabolic study of perathiepin (737, R = H), several potential metabolites were prepared as standards. Reaction of 736 (R = H) with 1-(ethoxycarbonyl)piperazine afforded the carbamate 740 (R = H) which was hydrolyzed to norperathiepin²¹² (741, R = H). Oxidation of perathiepin with hydrogen peroxide under various conditions²⁹¹ gave the S-oxide 742 (R = H), N-oxide 743 (R = H) and S,N-dioxide 744 (R = H). Oxidation with the excess of hydrogen peroxide in boiling acetic acid led to cleavage of the molecule and to the formation of the sulfone corresponding to 738 (R = H) (ref.²¹²).

The nuclearly hydroxylated perathiepin derivatives were prepared via the corresponding methoxy compounds (737, R = OCH₃) which were demethylated with boron tribromide. The cyclization of the methoxylated acids to 734 (R = OCH₃) were carried out with polyphosphoric acid in boiling toluene. The synthesis of the 2-hydroxy derivative 737 (R = 2=OH) started from 734 (R = 2-NH₂) which was transformed with ni-

trous acid to **734** ($R = 2\text{-OH}$), this was methylated to **734** ($R = 2\text{=OCH}_3$) and the synthesis proceeded then normally³⁶⁰; the product had weak activity. The synthesis of the 3-hydroxy derivative **737** ($R = 3\text{-OH}$) proceeded along the general scheme³⁸⁴ and the product was found more active than perathiepin in the line of ataxic and cataleptic activity. The way to the 2,3-dihydroxy derivative³⁴⁹ (**737**, $R = 2,3\text{-(OH)}_2$) met with two anomalies. The first was the formation of a heptacyclic by-product (cf. **1074**, **12,13,16,17-tetramethoxy**) in the cyclization aiming at **734** ($R = 2,3\text{-(OCH}_3)_2$). The second was the reaction of **735** ($R = 2,3\text{-(OCH}_3)_2$) with hydrogen chloride in chloroform giving a 1:1 mixture of **736** ($R = 2,3\text{-(OCH}_3)_2$) and **745** (Wagner – Meerwein rearrangement) which was separated by crystallization. The remaining part of the synthesis proceeded normally; the product was practically inactive. The enamine **739** ($R = 2,3\text{-(OCH}_3)_2$) was also prepared³⁴⁹. The 6-hydroxy derivative **737** ($R = 6\text{-OH}$) was prepared along the general scheme³²⁸; the final product was less active than perathiepin and was oxidized to the S-oxide (**742**, $R = 6\text{-OH}$). The enamine **739** ($R = 6\text{-OCH}_3$) was also synthesized³²⁸. For preparing the 7-hydroxy derivative (**737**, $R = 7\text{-OH}$), the 7-methoxy compound was first prepared which was not possible by the normal way²⁸⁷. Reaction of **735** ($R = 7\text{-OCH}_3$) with hydrogen chloride led only to the product of elimination (**737**, $R = 3\text{-OCH}_3$). It was, therefore, necessary to transform the ketone **734** ($R = 7\text{-OCH}_3$) to the enamine **739** ($R = 7\text{-OCH}_3$) which was reduced with diborane in situ to **737** ($R = 7\text{-OCH}_3$) showing considerable antihistamine activity. All attempts at its demethylation as well as modified procedures^{287,351,401} were unsuccessful; the final product was **738** ($R = 3\text{-OH}$). After this experience, the syntheses aiming at the 3,7-dihydroxy and 7,8-dihydroxy derivatives of perathiepin were stopped in the stage of dimethoxy compounds⁴¹³ (**737**, $R = 3,7\text{-(OCH}_3)_2$ and **737**, $R = 7,8\text{-(OCH}_3)_2$); they had to be carried out also via the enamines **739**. The oxygen function in position 7 makes evidently the bond between C-10 and N of piperazine very labile. The neuroleptically very active 8-hydroxy compound (**737**, $R = 8\text{-OH}$) was the first hydroxy compound prepared in the series³⁰⁰. In addition to the normal way, it was also obtained by debenzylation of the 8-benzyloxy compound **737** ($R = 8\text{-OCH}_2\text{C}_6\text{H}_5$) and also by air oxidation of the Grignard reagent prepared from 8-bromo-**737**. The 2,8-dihydroxy and 3,8-dihydroxy compounds (**737**, $R = 2,8\text{-(OH)}_2$ and **737**, $R = 3,8\text{-(OH)}_2$) were prepared by the normal route³⁸⁵ and were found less active than perathiepin. The metabolic study using the urine of rats and patients led only to identification of norperathiepin (**741**, $R = \text{H}$) and S-oxide (**742**, $R = \text{H}$) as metabolites¹²¹⁶. Racemic perathiepin was resolved with dibenzoyl-(+)-tartaric an di(*p*-toluoyl)-(-)-tartaric acids to enantiomers. Only the (+)-enantiomer was tested and its ataxic activity was found similar to that of the racemate; there was no stereoselectivity of action in this direction²¹².

On the basis of analogy with the known neuroleptics chlorpromazine and chlorprothixene (**593**, $R = 2\text{-Cl}$), whose molecules contain the atom of chlorine in position corresponding to 8 in **737**, the 8-chloro derivative of perathiepin (octoclothepin, clorote-

pin (INN), 737, R = 8-Cl) was the first of the chlorinated perathiepin derivatives, which was prepared by the mentioned route²³⁵. It also was prepared from 740 (R = 8-Cl) by reduction with complex hydrides²⁹³ and in low yield by Leuckart reaction from 734 (R = 8-Cl) and 1-methylpiperazine²⁹³. Octoclothepin was found to be an extremely potent neuroleptic agent with the intensity of effects at least comparable to those of perphenazine^{269,1217-1221}. This finding led to preclinical investigations¹²²²⁻¹²²⁶ which enabled clinical trials¹²²⁷⁻¹²³². The therapeutic activity of octoclothepin in schizophrenic psychoses was clearly recognized (accompanied by the usual extrapyramidal side effects) and the agent in the form of maleate was introduced by SPOFA¹²³³ as an oral neuroleptic to pharmacotherapy of schizophrenia (Clotepin®).

Further chemical work with octoclothepin included first the oxidation reactions leading to the S-oxide^{235,291} (742, R = 8-Cl), N-oxide²⁹¹ (743, R = 8-Cl), and S,N-dioxide²⁹¹ (744, R = 8-Cl). For preparing the sulfone 747 it was necessary to oxidize 736 (R = 8-Cl) to 746 which was subjected to the substitution reaction with 1-methylpiperazine²⁹¹. Further oxidation led to the sulfone N-oxide 748. Analogy of the described method led from 736 (R = 8-Cl) to noroctoclothepin (741, R = 8-Cl) (ref.²⁶⁷) which was oxidized to the S-oxide²⁹¹. The cyclic hydroxylamine derivative 749 could also be considered a potential metabolite of octoclothepin. It was prepared from 741 (R = 8-Cl) by reaction with benzoyl peroxide^{339,368} and by the following hydrolysis of the obtained 750; compound 751 was a by-product and is also a potential metabolite³⁶⁸.

Out of the nuclearly hydroxylated derivatives of octoclothepin, the following were prepared by the mentioned methods: 2-hydroxy (737, R = 2-OH-8-Cl) which is practically inactive; 3-hydroxy (737, R = 3-OH-8-Cl) which is highly active³¹³; 3-hydroxy S-oxide (742, R = 3-OH-8-Cl) (ref.³⁶⁸); 3-hydroxy derivative of noroctoclothepin (741, R = 3-OH-8-Cl) which was prepared³⁶⁸ via 740 and 741 (R = 3-OCH₃-8-Cl); 2,3-dihydroxy³⁴⁹ (737, R = 2,3-(OH)₂-8-Cl); 6-hydroxy (737, R = 6-OH-8-Cl) and the related S-oxide, N-oxide, 6-hydroxy-nor and its S-oxide³⁶⁹; 2,6-dihydroxy (737, R = 2,6-(OH)₂-8-Cl) and 3,6-dihydroxy⁴¹¹ (737, R = 3,6-(OH)₂-8-Cl). Attempts to prepare the 7-hydroxy and 3,7-dihydroxy derivatives^{355,362} were unsuccessful similarly like in the perathiepin series; they were discontinued in the stage of the methoxy compounds (737, R = 7-OCH₃-8-Cl, 3,7-(OCH₃)₂-8-Cl).

The enamine 739 (R = 8-Cl, dehydroclothepin) was prepared from 734 (R = 8-Cl) by three methods: (i) by heating with 1-methylpiperazine and 4-toluenesulfonic acid in benzene (low yield), (ii) by reaction with 1-methylpiperazine and titanium tetrachloride in benzene²⁵⁷ (collision with refs^{1234,1235}) and (iii) by heating with 1-methylpiperazine 4-toluenesulfonate in vacuo to 190°C²⁹³. This compound was found even more active than octoclothepin in several tests²⁵⁷.

After the introduction of octoclothepin, many further papers dealing with this agent were published in the lines of pharmacology^{1236,1237}, further clinical experiences¹²⁴¹.

¹²⁴⁸, and the use of very high doses¹²⁴⁹⁻¹²⁵¹. The methanesulfonate²⁹³ of octoclothebin was introduced on the market as an injection form (Clotepin inj. [®]) (refs¹²⁵²⁻¹²⁵⁵) and the oily solution of the octoclothebin base was introduced as a semi-depot preparation for intramuscular administration (Clotepin oleosum inj. [®]) (refs¹²⁵⁶⁻¹²⁶¹). Analytical methods for determination of octoclothebin were elaborated^{1262,1263} and its pharmacokinetics with [³⁵S] and [¹⁴C]labeled substances was studied^{1264,1265}. The metabolic studies used the synthesized potential metabolites as standards and the metabolites were isolated from urine and faeces of rodents and humans, from bile and liver homogenates¹²⁶⁶⁻¹²⁷⁴. The following compounds were identified as metabolites : octoclothebin S-oxide, N-oxide, S,N-dioxide, noroctoclothebin, its S-oxide, 2- and 3-hydroxy derivatives of octoclothebin, 3-hydroxy S-oxide and the 6-hydroxy derivative of noroctoclothebin. The reduction of the N-oxide in the liver back to octoclothebin was demonstrated¹²⁷².

Octoclothebin has been used as the racemate. The resolution with dibenzoyl-(+)-tartaric and (+)-tartaric acid was carried out²⁹³ and afforded the enantiomers which were first pharmacologically tested in the form of maleates. On the basis of the almost equal discoordinating effect of both enantiomers and an incorrect interpretation of the results in the test of catalepsy, we concluded erroneously that the neuroleptic action of octoclothebin is not stereoselective. Swiss authors¹²⁷⁵, using our substances, carried out a crystallographic and diffractometric study of racemic and (+)-octoclothebin, they described the preferred conformation of the (+)-enantiomer and determined the absolute configuration at C-10 as (S). They published then^{1276,1277} the finding of stereoselectivity of the neuroleptic effects of octoclothebin in the tests of catalepsy, of antiapomorphine and antiamphetamine action : in the racemic octoclothebin, the (S)-(+)-enantiomer is the active component. Shortly thereafter this finding was confirmed by our group³²⁶. The enantiomers were prepared in greater amounts and their clinical comparison was carried out¹²⁷⁸. It was found that the (S)-(+)-enantiomer is anti-psychotically more potent and brings about more extrapyramidal side reactions. The (R)-(-)-enantiomer, however, is not completely inactive which indicated that the stereoselectivity of the octoclothebin effects has only a certain limited degree. This was confirmed by further in vitro experiments using the water-soluble methanesulfonates of the enantiomers⁴³⁷. These substances were evaluated from the view-point of their affinity to brain dopamine receptors using crude homogenates of caudate nucleus from calf brains with [³H]spiperone as the radioactive ligand³⁸⁸, preparation of the rat-brain striatal membranes with [³H]haloperidol as the ligand¹²⁷⁹, and finally using the determination of the influence on the homovanillic acid concentration in the rat corpus striatum¹²⁸⁰; the incomplete stereoselectivity of action was explained by the relative flexibility of the octoclothebin molecule which is thus able to a certain adjustment to the shape and binding sites of the receptor³⁸⁸. Two monographical articles^{1281,1282} were devoted to octoclothebin.

Further 8-halo derivatives of perathiepin, i.e. 8-fluoro and 8-bromo (737, R = 8-F, 8-Br) were prepared by the route outlined²³⁵; the 8-iodo compound (737, R = 8-I) had to be synthesized in a modified way³⁰². The ketone 734 (R = 8-I) was obtained from the 8-amino ketone (734, R = 8-NH₂) and the remaining part of the synthesis proceeded along the scheme. All the three halo compounds are very active neuroleptics; the 8-iodo compound was the most active one in the test of catalepsy³⁰². The following 8-alkyl derivatives of perathiepin (737, R = 8-alkyl) were prepared using the scheme: 8-methyl²³⁸, 8-ethyl, 8-isopropyl, 8-butyl³¹⁵, 8-(tert-butyl) (ref.²³⁸) and 8-octyl³¹⁵; the ethyl and isopropyl derivative are equipotent (especially in the test of catalepsy) with octoclothepin³¹⁵. In the synthesis of the 8-cyclopropyl compound (737, R = 8-cyclopropyl) it was necessary to cyclize the starting acid to 734 (R = 8-cyclopropyl) with trifluoroacetic anhydride³¹⁵. The synthesis of the 8-cyclopentyl compound proceeded normally³¹⁵. The cyclopropyl derivative attained the activity of octoclothepin³¹⁵. The 8-isopropyl, 8-butyl and 8-cyclopentyl enamines 739 were prepared by the titanium tetrachloride method³¹⁵ and the first of them was ten times more active than octoclothepin in the test of catalepsy. For the 8-alkoxy derivatives of perathiepin, the ketone 734 (R = 8-OCH₃) (obtained by cyclization of the corresponding acid with polyphosphoric acid in boiling toluene) was a common intermediate^{238,300}. It was demethylated with pyridine hydrochloride to the 8-hydroxy ketone 734 (R = 8-OH) which was O-alkylated with ethyl bromide, butyl bromide, benzyl chloride and 2-bromopyridine to the corresponding ketones which were then processed in the described manner and gave 737 (R = 8-OCH₃, 8-OC₂H₅, 8-OC₄H₉, 8-OCH₂C₆H₅, 8-O-2-pyridyl) (ref.³⁰⁰). The 8-methoxy compound (octomethothepin) is an extremely active neuroleptic agent²³⁸.

A further interesting group were the 8-alkylthio derivatives of perathiepin out of which 8-methylthio, 8-ethylthio, 8-propylthio, 8-isobutylthio, and 8-dodecylthio compounds^{238,308} were prepared. The first two members of the series (737, R = 8-SCH₃, 8-SC₂H₅) are very active and especially the 8-methylthio compound (methiothepin, metitepine (INN)) became world-wide known because of its central antiserotonin action, which was discovered by the researchers of Hoffmann – La Roche Company, collaborating with us in the line of this compound. For references to biological information on methiothepin until 1977, cf. the review³⁵⁶. Methiothepin was prepared also via the enamine 739 (R = 8-SCH₃) by its reduction with zinc in acetic acid³⁹⁷. Normethiothepin (741, R = 8-SCH₃) was prepared from 736 (R = 8-SCH₃) via the corresponding carbamate 740 (ref.²⁶⁷). Oxidation products of methiothepin and normethiothepin were prepared as potential metabolites²⁹¹: S⁸-oxide, S⁵,S⁸-dioxide, N-oxide, S⁵,S⁸,N-trioxide and normethiothepin-S⁵,S⁸-dioxide. Oxidation of methiothepin with hydrogen peroxide in boiling acetic acid resulted in cleavage and formation of 738 (R = 2-SO₂CH₃) 5,5-dioxide⁴³⁷. Further compounds prepared were 741 (R = 8-SO₂CH₃) and its 5-oxide⁴⁰³, the 8-methylthio analogue of 751 (ref.³⁹⁷), the similar 8-methylsulfonyl analogue and its 5-oxide⁴⁰³. Out of the Ar-hydroxylated deriv-

atives of methiothepin only the 2-hydroxy ($737, R = 2\text{-OH-8-SCH}_3$) and the 3-hydroxy compound ($737, R = 3\text{-OH-8-SCH}_3$) were prepared⁴⁷⁵. The latter was identified as a metabolite and it is a strong neuroleptic agent. The question of stereoselectivity of the methiothepin action (cf. ref.³⁵⁶) was reinvestigated^{1283,1284}. Many additions to the knowledge of biochemical, pharmacological, endocrinological and behavioural actions of methiothepin were published out of which only a selection is cited here¹²⁸⁵⁻¹³⁰⁶.

It was clear that variously 8-substituted derivatives of perathiepin ($737, 8\text{-R}$) represent a big family of very active neuroleptic agents²²⁸. Twenty further members of this family were synthesized. The 8-(methylseleno) ketone ($734, R = 8\text{-SeCH}_3$) served as the starting material for preparing $737 (R = 8\text{-SeCH}_3)$ and the corresponding enamine 739 (ref.²⁸¹); both compounds are more active as neuroleptics than octoclothepin. The 8-nitro compound ($737, R = 8\text{-NO}_2$), which was prepared along the scheme²³³, is a potent neuroleptic with high ataxic, hypothermic and thiopental potentiating effects. Its S-oxide was prepared by oxidation²³³. It could be directly transformed to the 8-amino compound ($737, R = 8\text{-NH}_2$) (ref.²³³) which was also prepared by a modification of the total synthesis: the alcohol $735 (R = 8\text{-NH}_2)$ was transformed by treatment with trifluoroacetic anhydride and by methanolysis to $735 (R = 8\text{-NHCOCF}_3)$. This was transformed to $736 (R = 8\text{-NHCOCF}_3)$ giving in one step by the substitution reaction with 1-methylpiperazine and treatment with hydrochloric acid the desired $737 (R = 8\text{-NH}_2)$ with strong cataleptic and hypothermic activities²³³. Acetylation of $734 (R = 8\text{-NH}_2)$ gave the N-acetyl derivative which was converted in three steps to 8-acetamido derivative of perathiepin ($737, R = 8\text{-NHCOCCH}_3$) (as a neuroleptic weaker than the amino compound²⁸¹). Similar syntheses starting from $734 (R = 8\text{-NH}_2)$ led to 8-(ethoxycarbonylamino) and 8-(methanesulfonamido) derivatives of perathiepin³⁰² with low neuroleptic activity. From the new 4-(dimethylamino)thiophenol and 4-(4-morpholinyl)thiophenol via the corresponding 8-amino ketones 734 and via the enamines $739 (R = 8\text{-N(CH}_3)_2, 8\text{-morpholino})$, the 8-dimethylamino and 8-(4-morpholinyl) derivatives of perathiepin were prepared⁴⁹⁹; the former is a typical incisive neuroleptic agent with strong ataxic, cataleptic, antiapomorphine and antiadrenergic activities. Diazotization of $734 (R = 8\text{-NH}_2)$ in hydrochloric acid and reaction of the diazonium salt with sulfur dioxide in the presence of cuprous chloride gave the sulfonyl chloride $734 (R = 8\text{-SO}_2\text{Cl})$ which was processed *in situ* by reactions with dimethylamine and pyrrolidine. The obtained 8-(aminosulfonyl) ketones were processed in three usual steps to 8-(dimethylaminosulfonyl) and 8-(pyrrolidinosulfonyl) derivatives of perathiepin³⁰¹ ($737, R = 8\text{-SO}_2\text{N(CH}_3)_2, 8\text{-SO}_2\text{NC}_4\text{H}_8$). The 8-(dimethylaminosulfonyl) ketone was also transformed to the enamine $739 (R = 8\text{-SO}_2\text{N(CH}_3)_2)$. Both dimethylaminosulfonyl compounds are stronger neuroleptics than octoclothepin.

For preparing the 8-trifluoromethyl ketone ($734, R = 8\text{-CF}_3$) it was necessary to carry out the cyclization step with hydrogen fluoride²⁴⁶ (hydrolysis of trifluoromethyl

to carboxyl was the side reaction); the usual three steps gave 737 ($R = 8\text{-CF}_3$) which was milder than octoclotheplin in the ataxic activity but stronger in cataleptic effect. 8-Cyano derivative of perathiepin (737, $R = 8\text{-CN}$) was prepared by two ways. The first²⁵⁶ used the conversion of the 8-bromo ketone (734, $R = \text{Br}$) to the 8-cyano ketone with cuprous cyanide and then the usual three steps. The other³¹⁴ used the conversion of 737 ($R = 8\text{-Br}$) to the 8-cyano compound with cuprous cyanide in hexamethylphosphoric triamide. The second method was complicated by the formation of the carboxamide 737 ($R = 8\text{-CONH}_2$) as the by-product. Whereas the amide was weak as a CNS agent, the nitrile (737, $R = 8\text{-CN}$) was equipotent with octoclotheplin²⁵⁶. Hydrolysis of the cyano ketone gave the keto acid 734 ($R = 8\text{-COOH}$) which was transformed in the three usual steps to the 8-carboxy derivative of perathiepin (737, $R = 8\text{-COOH}$) which was devoid of CNS activity²⁵⁶. Reduction of the nitrile 737 ($R = 8\text{-CN}$) with lithium aluminium hydride²⁵⁶ gave the 8-(aminomethyl) compound 737 ($R = 8\text{-CH}_2\text{NH}_2$) being a very weak CNS agent. A similar reduction with lithium aluminium triethoxyhydride gave in addition to the mentioned 8-(aminomethyl) compound the desired aldehyde 737 ($R = 8\text{-CHO}$) which is equipotent with octoclotheplin³¹⁴. Deamination of 737 ($R = 8\text{-CH}_2\text{NH}_2$) with nitrous acid in acetic acid gave the mixture of the 8-(hydroxymethyl) and 8-(acetoxymethyl) compounds (737, $R = \text{CH}_2\text{OH}$ and $\text{CH}_2\text{OCOCH}_3$) which was separated; both products have similar neuroleptic activity like octoclotheplin³¹⁴. 8-Acetyl and 8-propionyl derivatives of perathiepin³¹⁴ were prepared by applying the Beech method in the stage of 735 : the 8-amino alcohol (735, $R = 8\text{-NH}_2$) was diazotized, the diazonium salt was treated with semicarbazones of acet-aldehyde and propionaldehyde and the products were hydrolyzed to 735 ($R = 8\text{-COCH}_3$, $8\text{-COC}_2\text{H}_5$). Two usual steps gave 737 ($R = 8\text{-COCH}_3$, $8\text{-COC}_2\text{H}_5$). The acetyl compound is about three times as active as octoclotheplin, the propionyl compound is equipotent. At least twenty two 8-substituted derivatives of perathiepin were found to be very potent neuroleptic agents and most of them could probably be useful in the treatment of schizophrenic psychoses. Two attempts to evaluate the structure-activity relations in this series by the QSAR methods were undertaken^{350,536}.

N-Methyl is not the only N-substituent favourable for the activity when connected with a suitable 8-substituent. Various N-substituted perathiepin derivatives were prepared (i) by N-alkylation of 741, (ii) by N-acylation of 741 and the following reduction with lithium aluminium hydride, (iii) by substitution reactions of 736 with correspondingly N-monosubstituted piperazines, (iv) by addition of 741 to compounds like acrylonitrile, (v) by reactions of compounds like 763 with primary amines, and (vi) by transformation of the functional groups in the N-substituents. Out of the 752 ($R = 8\text{-Cl}$) only those with $R^1 = \text{ethyl, isopropyl and tert-butyl}$ are active as neuroleptics³⁴⁸, N-allyl, N-propargyl and N-(2-dimethylaminoethyl) are much weaker²⁶⁷. Compound 753 ($R = 8\text{-Cl}$) is more active than the homologue 754 ($R = 8\text{-Cl}$) (ref.²⁶⁷). Compounds 752 with R^1 being aryl, pyridyl, benzyl, higher aralkyl (including 4-

fluoroaralkyl) are almost devoid of neuroleptic activity^{212,235,267,321,394}. Very positive influence on the activity is executed by lower hydroxyalkyls as R¹ substituents, documented especially by 755 (noroxyclohepin (R = H) and 8-substituted derivatives^{212,267}) and 756 (oxythebin (R = H) and 8-substituted derivatives^{212,267,301,315,403}). The following further 8-substituted hydroxyalkyl derivatives 757 proved interesting (R¹ given): 2-hydroxypropyl³⁴¹, 3-hydroxy-2-methylpropyl³⁴¹, 2-hydroxybutyl⁴³⁷, 3-hydroxybutyl²⁶⁷, 4-hydroxybutyl²⁶⁷, 4-hydroxypentyl⁴³⁷, and 2,3-dihydroxypropyl³⁴¹. The propionamide (758, R = 8-Cl) and propionamidoxime (759, R = 8-Cl) derivatives preserve also a high degree of activity²⁶⁷. Lower esters (acetates, propionates) of the hydroxyalkyl derivatives 755 and 756 are active²⁶⁷; esters with acids like 3,4,5-trimethoxybenzoic²⁶⁷, mandelic and benzilic⁴³⁷ are inactive. Esters with long-chain fatty acids are very useful as depot neuroleptics (long-acting) and will be described separately. Compounds 760 and 761 (R = 8-Cl, 8 = SCH₃) with the cyclic acetal groups³⁰⁹ have very high activity which equals that of octoclothebin and methiothebin. Compounds 762 were prepared by alkylation of 741 with 1-(3-chloropropyl)-1,3-dihydro-2H-benzimidazole-2-one⁵¹⁶ as antiallergics; compound 762 (R = H) proved in the test of passive cutaneous anaphylaxis in rats more active than oxatomide¹²⁰¹, used as the prototype.

Noroxyclothebin (755, R = 8-Cl) was best prepared by the substitution reaction of 736 (R = 8-Cl) with 2-(1-piperazinyl)ethanol²⁶⁷ and because of the high activity was considered for some time a candidate for clinical testing. The analogous enamine 764 (R = 8-Cl) was prepared by heating 734 (R = 8-Cl) with the monotosylate of 2-(1-piperazinyl)ethanol to 190°C in *vacuo*³⁴¹. Its unstable N-oxide³⁴¹ was found extremely active in the test of catalepsy. A pharmacokinetic study of noroxyclothebin¹³⁰⁷ was carried out with substance labelled with ¹⁴C in position 10 and the metabolic study detected twenty metabolites; only two were identified with the help of synthetic standards: 741 (R = 8-Cl) and the S-oxide of 755 (R = 8-Cl) (ref.³⁴¹). Noroxyclothebin N-oxide was also prepared³⁴¹. The enol ether 766 was prepared by heating 755 (R = 8-Cl) with cyclododecanone dimethyl ketal in toluene in the presence of 4-toluenesulfonic acid³⁴¹ as a potential depot neuroleptic; it did not show this presumed property. As a further potential metabolite, compound 767 (R = H) was expected but the attempt at its preparation via 767 (R = CH₃) was unsuccessful. For this reason, a different method was used³⁸⁹: the ketone 734 (R = 3-OCH₃-8-Cl) was demethylated with pyridine hydrochloride to 734 (R = 3-OH-8-Cl) which was reduced to the corresponding alcohol. This was treated with methanesulfonyl chloride and gave 769. Treatment of this compound with 2-(1-piperazinyl)ethanol proceeded under substitution and aminolysis and gave the desired 767 (R = H). Oxythebin 756 (R = 8-Cl) was prepared similarly²⁶⁷, had similar activity and gave similarly the N-oxide²⁹¹. Its 3-hydroxy derivative (768, R = H) as a potential metabolite was prepared by the same method like described for 767 (R = H) (ref.³⁸⁹). Compounds 767 and 768 (R = H)

had only low CNS activity – probably due to the significant decrease of lipophilicity (cf. ref.³⁸³).

The 8-methylthio compound **756** ($R = 8\text{-SCH}_3$, oxyprothepin) is the most important out of the neuroleptic amino alcohols of this series²⁷¹. It was first prepared from **741** ($R = 8\text{-SCH}_3$) by the addition to methyl acrylate and by the following reduction with lithium aluminium hydride²⁶⁷. Further synthetic methods are the substitution reaction of **736** ($R = 8\text{-SCH}_3$) with 3-(1-piperazinyl)propanol³⁴¹ (for a minor by-product, cf. ref.⁴⁹⁴) and by reduction of the enamine **765** ($R = 8\text{-SCH}_3$) which was prepared from **734** ($R = 8\text{-SCH}_3$) (ref.³⁴¹). Oxyprothepin was carefully pharmacologically investigated and found to be more potent than octoclotheppin¹³⁰⁸⁻¹³²⁰. An important reason for its introduction on the market (Meclopin[®]) was the fact that it could be used as the basis for a depot ester preparation⁴⁷⁸. Its therapeutic usefulness in schizophrenic psychoses and other mental diseases was demonstrated in many communications; only selected papers are cited¹³²¹⁻¹³⁴⁸. An X-ray crystallographic study of racemic oxyprothepin gave information on the preferred conformation of its molecule¹³⁴⁹. Synthesis of potential metabolites of oxyprothepin proceeded together with the metabolic studies. Some of the potential metabolites are identical with those of methiothepin (normethiothepin and its oxidation products). The following potential metabolites with the intact 3-hydroxypropyl side chain were synthesized : 8-S-oxide^{291,397}, 5,8-dioxide^{291,397}, N-oxide²⁹¹, 8-sulfone (**756**, $R = 8\text{-SO}_2\text{CH}_3$), its 5-oxide, N-oxide and 5,N-dioxide⁴⁰³, 2-hydroxy derivative⁴⁷⁵, 3-hydroxy derivative³³⁵ (for discussion of its surprisingly low neuroleptic activity, cf. ref.³⁸³), 2-hydroxy-8-sulfone⁴⁷⁶, and 3-hydroxy-8-sulfone⁴⁷⁶. The pharmacokinetics (partly with ^{14}C and ^3H -labelled preparations) was studied in rats and humans¹³⁵⁰⁻¹³⁵². The metabolic studies in rats and humans led to the identification (mostly with the help of synthetic standards) of the following substances^{1350,1353-1356} : 8-S-oxide, 5,8-dioxide, N-oxide, 5,8,N-trioxide, 8-sulfone, 5-oxide-8-sulfone, 3-hydroxy derivative, a partly characterized hydroxy-8,N-dioxide, and normethiothepin.

Long-chain fatty acid esters of neuroleptic aminoalkanols have properties of depot neuroleptic agents^{276,478,1357} : an intramuscular injection of such esters in vegetable oils forms in the muscle an oily depot from which the ester only slowly penetrates to the blood stream where it is quickly hydrolyzed by esterases¹³⁵⁸ and the free amino alcohol enters the brain and finds the sites of action. The esters per se are practically inactive in acute experiments, e.g. on the oral administration. Our amino alcohols **755** and **756** (and also **765** (ref.²⁹²)) were used for the preparation of esters with butyric, oenanthic, caprylic, caprinic (decanoic), lauric, and palmitic acid. These esters were prepared (i) by acylation of the amino alcohols with acid chlorides or acid anhydrides^{292,315,339}, (ii) by reactions of the amino alcohols with the acids in boiling xylene under conditions of azeotropic distillation^{292,339}, (iii) similarly in dichloromethane in the presence of carbonyldiimidazole³⁹⁷, (iv) by substitution reaction of **736** ($R = 8\text{-SCH}_3$) with N-(3-

decanoxyloxypropyl)piperazine^{339,397} (especially for the case of 771), and (v) by alkylation of 741 (R = 8-Cl) with 2-(decanoxyloxy)ethyl chloride⁴³⁷ (for the case of 772). Method (i) in the case of using an excess of the acid chloride is complicated by a cleavage reaction to 736 (R = 8-SCH₃) and 1-decanoyl-4-(3-decanoxyloxypropyl)piperazine³³⁹ (for the case of 771). Three of the esters were pharmacologically tested: oxyprothepin oenanthate (770) (ref. 1359), noroxyclotheplin decanoate (772) (ref. 1360, 1361) and oxyprothepin decanoate (771) (ref. 1362, 1363); the duration of the antiapomorphine effects in rats and dogs after a single intramuscular injection was evaluated. The most prolonged effects were found with oxyprothepin decanoate which was handed over to extensive clinical trials including double-blind comparisons with the most renowned depot neuroleptic agents used abroad¹³⁶⁴⁻¹³⁹⁵. The results were positive (a single injection maintains the antipsychotic effects for three to four weeks and our compound brings about less extrapyramidal side-effects than the agents used for comparison including fluphenazine decanoate and the drug was introduced on the market (Meclopin inj.®). Several esters like 770 - 772 but with R = C₂H₅, CH(CH₃)₂, C₄H₉ (ref. 315) and esters of noroxyclotheplin with unsaturated, branched-chain, alicyclic (including 773), araliphatic and dicarboxylic acids³³⁹ were prepared but were found less convenient. Neither the aza analogue 774 of oxyprothepin decanoate³⁹⁷ did evoke attention; it was prepared from 756 (R = 8-SCH₃) and octyl isocyanate in boiling toluene.

The following Ar-mono- or disubstituted derivatives of perathiepin (737), the corresponding enamines (739), nor compounds (741), and amino alcohols (755, 756) with the exception of the 8- (already described), 2- and fluoro substituted derivatives (will be described in the following paragraphs) were prepared using the general procedure or the specified modification: 1-chloro (737, R = 1-Cl) (the hydrolysis of the intermediate (6-chloro-2-(phenylthio)phenylacetonitrile) stopped in the stage of the amide and it was necessary to cyclize this amide with polyphosphoric acid which proceeded well²³⁶, the other steps proceeded along the scheme; the final product lacks CNS activity); 3-chloro²³⁶ (737, R = 3-Cl) (the synthesis proceeded normally, the product has low ataxic activity); 4-chloro²³⁶ (737, R = 4-Cl) (normal procedure, very low ataxic activity); 6-chloro²³⁶ (737, R = 6-Cl) (normal procedure, low ataxic activity); 6-chloro-nor (741, R = 6-Cl) (practically inactive⁴⁸⁷); 6-methyl (737, R = 6 = CH₃) (the cyclization step required very mild conditions⁵⁵¹; at 150°C instead of 734 (R = 6-CH₃), the heptacyclic product of its dehydration and dehydrogenation was obtained⁴⁸⁷; the remaining part of the synthesis was normal; the final product is a noncataleptic tranquilizer⁵⁵¹); 6-methyl-nor (741, R = 6-CH₃) (the product potentiates yohimbine in mice like a potential antidepressant); 6-ethyl-nor (741, R = 6-C₂H₅) (synthesis was normal⁴⁸⁷, the product has antireserpine activity like a potential antidepressant); 6-methoxy-nor (741, R = 6-OCH₃) (potential antidepressant⁴⁸⁷); 7-chloro²³⁶ (737, R = 7-Cl) (normal procedure, 10% of the ataxic activity of that of perathiepin); 7-methyl⁴²⁵ (737, R = 7-CH₃) (normal synthesis, antihistaminic activity *in vivo*); 7-ethyl⁴²⁵ (737, R =

= 7-C₂H₅) (high antihistamine activity *in vivo*); 6,7-dichloro⁴⁰⁷ (737, R = 6,7-Cl₂) (normal synthesis, weak sedative and relatively strong cataleptic activity); 2-acetyl-8-chloro and 3-acetyl-8-chloro³⁷⁷ (737, R = 2-COCH₃-8-Cl and 3-COCH₃-8-Cl) (Beech reaction used for obtaining 735 (R = 2-COCH₃-8-Cl, 3-COCH₃-8-Cl)); 7-trifluoromethyl⁴⁰¹ (737, R = 7-CF₃) (cyclization with polyphosphoric acid in dichlorobenzene at 190°C gave 734 (R = 7-CF₃) as the main product which was accompanied by two by-products – 734 (R = 7-COOH) and 775 giving on alkaline hydrolysis 734 (R = 9-COOH); the final product has relatively strong ataxic and cataleptic activity); 7,8-dichloro³⁴⁰ (737, R = 7,8-Cl₂) and also the 3-hydroxypropyl analogue and its octanoate (the synthesis was normal; low ataxic, medium cataleptic and anti-apomorphine effects); 7-trifluoromethyl-8-chloro³⁵⁵ (737, R = 7-CF₃-8-Cl) (cyclization at 180°C gave in addition to 734 (R = 7-CF₃-8-Cl) some 734 (R = 7-COOH-8-Cl) and 776 giving on alkaline hydrolysis 734 (R = 8-Cl-9-COOH); low ataxic and cataleptic activity).

The 9-chloro compound (737, R = 9-Cl) was not accessible by the normal route because the cyclization of (2-(3-chlorophenylthio)phenyl)acetic acid afforded exclusively the 7-chloro ketone²³⁶ (734, R = 7-Cl). A method of synthesis of 734 (R = 9-Cl) from 2-(3-chlorophenylthio)benzoic acid in five steps was elaborated²⁹⁸, the crucial step being the oxidation of 1-chloro-9-methylenethioxanthene with thallic nitrate in methanol proceeding under rearrangement of the skeleton and giving 777 which was hydrolyzed to 734 (R = 9-Cl); a by-product was 734 (R = 1-Cl). The rest of the synthesis proceeded normally affording the neuroleptically inactive 737 (R = 9-Cl). An attempt to cyclize (2-(2-acetamido-5-chlorophenylthio)phenyl)acetic acid with polyphosphoric acid in toluene²⁹⁸ gave two isomeric Schiff bases – products of interaction with toluene – one of them being 778. The synthesis of the 6,9-dichloro compound 737 (R = 6,9-Cl₂) led in the cyclization step (PPA, 170°C) to a mixture of the major 779 and the minor 734 (R = 6,9-Cl₂) which was used for concluding the work²⁹⁹; the product was inactive. Thus, only substitution in position 8 in the molecule of perathiepin led to very active neuroleptic agents. The influence of the substitution in position 2 will be treated in one of the following paragraphs.

The fact that neuroleptics of the perathiepin series are partly metabolized to Ar-hydroxylated compounds (hydroxylation proven in positions 2, 3 and 6) which are hydrophilic and as such quickly eliminated from the organism, led to the idea to block the critical positions by fluorination which could result in potent compounds with prolonged action even after the oral administration^{344,373}. The synthesis of the fluorinated compounds used the general scheme via 734 – 736 and 741, and resulted in the corresponding 737, 739, 756 and others. Fluorinated compounds having the atom of chlorine in position 2 will be treated in the paragraph devoted to noncataleptic neuroleptics. The 2-fluoro compound (737, R = 2-F) was prepared by the general method³²³ and was found to be a relatively weak neuroleptic agent. The synthesis of the 3-fluoro com-

ound 737 ($R = 3\text{-F}$) was complicated in the stage of cyclization³⁸⁴ by the formation of the heptacyclic furan (cf. 1074) as a by-product; the final product had high and prolonged ataxic action and was noncataleptic. The synthesis of the 6-fluoro compound (737, $R = 6\text{-F}$) was connected with the similar phenomenon in the cyclization step³⁸⁰ and the final product has a perathiepin-like activity (free of the cataleptic affect). The 7-fluoro compound (737, $R = 7\text{-F}$) and the corresponding 739 ($R = 7\text{-F}$) were prepared by the general route⁴⁰¹; the former showed low activity but the latter had high ataxic and especially cataleptic activity. The 8-fluoro compound (737, $R = 8\text{-F}$) is a strong incisive neuroleptic agent^{235,302} with high ataxic and cataleptic activity. 2-Fluoro derivatives of octoclothepin, oxyclothepin, dehydroclothepin, methiothepin and oxyprothepin^{324,331} are the first cases of neuroleptic agents in this series with blocked metabolic hydroxylation in position 2; compound 737, ($R = 2\text{-F-8-Cl}$) and 756 ($R = 2\text{-F-8-Cl}$) are weaker neuroleptics than octoclothepin; 739 ($R = 2\text{-F-8-Cl}$) has high ataxic and cataleptic activity; the 8-methylthio compounds 737 and 756 ($R = 2\text{-F-8-SCH}_3$) are equipotent with the nonfluorinated prototypes. 2-Fluoro-8-isopropyl compounds 737 and 755 ($R = 2\text{-F-8-CH(CH}_3)_2$) were obtained by the normal way⁴⁶⁵ and display some ataxic and cataleptic activity. The 3,7-disfluoro compound (737, $R = 3,7\text{-F}_2$) was prepared normally⁴¹² (with the heptacyclic by-product in the cyclization step) and was found to have high ataxic (clear prolongation of the effect), sedative, cataleptic and antiapomorphine activities.

3-Fluoro-8-chloro compounds represent interesting derivatives of octoclothepin and N-modified analogues with blockade of hydroxylation in position 3. 3-Fluoro-8-chloro compounds 737, 739, 756 (ref.³³¹), 755 and 760 (ref.³⁵⁹) were prepared without complications and were mostly found to be more active than octoclothepin with clear signs of prolongation of the effects. On the other hand, compounds prepared from 736 ($R = 3\text{-F-8-Cl}$) by substitution reactions with N-(4-fluoroaralkyl)piperazines⁴⁰⁵ proved uninteresting. The 3-fluoro-8-bromo compound 755 was found similar to the 3-fluoro-8-chloro analogue⁴¹². The 3-fluoro-8-iodo ketone (734, $R = 3\text{-F-8-I}$) was prepared from the 3-fluoro-8-amino ketone (734, $R = 3\text{-F-8-NH}_2$) by diazotization and reaction with potassium iodide and in the usual way⁴¹² it was transformed to 755 ($R = 3\text{-F-8-I}$) which was very potent in the test for ataxic and cataleptic activity with mild protraction of the effects.

In the series of 3-fluoro-8-alkyl compounds^{462,494} the following were prepared by the standard methods : 737 ($R = 3\text{-F-8-C}_2\text{H}_5$, 3-F-8-CH(CH₃)₂), 739 ($R = 3\text{-F-8-CH(CH}_3)_2$), 755 ($R = 3\text{-F-8-CH}_3$, 3-F-8-CH(CH₃)₂) and 764 ($R = 3\text{-F-8-CH(CH}_3)_2$) (ref.⁵⁵¹). All of these compounds are extremely active neuroleptics with clearly protracted effects after oral administration out of which isofloxythepin (755, $R = 3\text{-F-8-CH(CH}_3)_2$) was selected for further studies^{382,478}. In the main chemical paper⁴⁹⁴, we described its synthesis by the final substitution reaction and the identification of a minor by-product, its resolution to enantiomers and preparation of four potential me-

tabolites by oxidation reactions wiz the S-oxide, N-oxide, S,N-dioxide and des-(hydroxyethyl) S-oxide. For metabolic studies, the synthesis of hexadeuterio (in isopropyl) and trideuterio (in ring C) analogues were prepared⁵⁰³. Pharmacological papers¹³⁹⁶⁻¹⁴⁰⁶ and reports on its biochemical pharmacology¹⁴⁰⁷⁻¹⁴²¹ described the various faces of its neuroleptic action and its high antidopaminergic activity. The activity of isofloxythepin was found to be stereoselective^{423,1422,1423}: the (–)-enantiomer was found to be the active component of the racemate which is the opposite than in the case of octoclothepin where the (+)-enantiomer was the active one. Nevertheless it is assumed that the absolute configuration on the chiral centre of (–)-isofloxythepin is the same like in the case of (+)-octoclothepin, i.e. (S) (ref. ⁴⁹⁴). In toxicological papers¹⁴²⁴⁻¹⁴²⁶ some possible side effects were studied and the determination of small amounts of the compound, especially in biological material, was worked up¹⁴²⁷⁻¹⁴³¹. Pharmacokinetic studies in animals and humans¹⁴³²⁻¹⁴³⁵ used partly the [10-¹⁴C]labelled compound. The metabolic studies in rats^{1432,1436} indicated as metabolites the N,S-dioxide (standard available⁴⁹⁴), further 780, 781 (formed evidently from 780 via 782), and the enamine 764 (R = 3-F-8-CH(CH₃)₂); some further metabolites were characterized only partly. Compound 780 was synthesized⁵⁰³ from (4-fluoro-2-iodophenyl)acetic acid and 2-(4-mercaptophenyl)propionic acid in six steps. The enamine 764 (R = 3-F-8-CH(CH₃)₂) was prepared⁵⁵¹ by both methods mentioned for similar cases and was found to have similar neuroleptic activity¹⁴³⁷ like isofloxythepin. Many papers¹⁴³⁸⁻¹⁴⁵³ were devoted to results of clinical trials of isofloxythepin in all usual phases and characterized the agent to be a highly potent neuroleptic with prolonged action (the effect of a single dose lasts for two to seven days). The practical use of isofloxythepin in this country was approved but the manufacture was not started due to the pretentious synthetic process. A monographical article¹⁴⁵⁴ was devoted to the agent. Isofloxythepin decanoate⁵⁰³ displayed in experiments properties of a supra-long acting depot neuroleptic.

Several N-substituted analogues of isofloxythepin were prepared via the corresponding 736 or 741 out of which the N-ethyl and N-(3-hydroxypropyl) compounds were the most active⁵⁰³. The following further 3-fluoro-8-substituted compounds 737 and 755 were prepared and most of them proved very active and had protracted action: 3-Fluoro-8-trifluoromethyl compounds 737 and 755 (ref. ⁴¹⁶) (for the cyclization of the corresponding acid, the reagent consisting of methanesulfonic acid and phosphorus pentoxide proved the only useful and gave 783 which was hydrolyzed to the ketone; final products are extremely active). 3-Fluoro-8-methoxy, 3-fluoro-8-hydroxy, 3-fluoro-8-ethoxy and 3-fluoro-8-(ethylthio) compounds 737 (ref. ⁴²²) were obtained by the standard procedures and all of them were very active neuroleptics. 3-Fluoro-8-methylthio compounds 737 and 756 were prepared similarly³²⁴ and had similar properties. The 3-fluoro-8-nitro compound 755 was prepared by the standard procedure⁴⁴⁷ and was found most active in the antiapomorphine tests but its activity is not protracted; it was

reduced to the 3-fluoro-8-amino compound 755 which was low-cataleptic but the other effects were significantly protracted. 3-Fluoro-8-(dimethylsulfamoyl) compound 755 was found less active than the analogues⁴⁴⁷ (the ketone 734 ($R = 3\text{-F-8-SO}_2\text{N}(\text{CH}_3)_2$) was prepared from the corresponding 8-amino ketone by diazotization, reaction with sulfur dioxide in hydrochloric acid in the presence of cuprous chloride and by the following reaction of the formed sulfonyl chloride with dimethylamine). In the synthesis of the 3-fluoro-8-cyano compound 755, the crucial step was the conversion of 735 ($R = 3\text{-F-8-I}$) to 735 ($R = 3\text{-F-8-CN}$) by reaction with cuprous cyanide in hexamethylphosphoric triamide⁴⁴⁷; the 3-fluoro-8-(aminocarbonyl) compound was the by-product in the final step of the synthesis. The 3-fluoro-8-acetyl compound 755 was found to be a strong incisive neuroleptic agent with protracted effects⁴⁴⁷ (acetyl was introduced in the stage of 735 ($R = 3\text{-F-8-NH}_2$) which was diazotized and subjected to the Beech reaction with acetaldehyde semicarbazone and the intermediate was hydrolyzed to 735 ($R = 3\text{-F-8-COCH}_3$)).

Now, the other fluorinated perathiepin derivatives (with the exception of those with Cl in position 2) will be mentioned. In the first attempt to synthesize the 2,3-difluoro derivative of octoclothepin³⁵⁴, it was found that in the intermediate 2-bromo-4,5-difluorobenzonitrile, the *p*-standing fluorine is more active than the *o*-standing bromine. This was used to prepare 2-bromo-5-fluoro-4-methoxybenzonitrile which was transformed in nine steps to the 2-fluoro-3-methoxy derivative of octoclothepin which was demethylated to the 2-fluoro-3-hydroxy analogue (737, $R = 2\text{-F-3-OH-8-Cl}$); it was less active than octoclothepin. The synthesis of 2,3-difluoro derivative of octoclothepin³⁹⁶ requested twenty steps, started from methyl anthranilate and proceeded via 2-(4-chlorophenylthio)-4,5-difluorobenzyl alcohol; the final product was less active than the 3-fluoro derivative of octoclothepin. The 6-fluoro derivative of octoclothepin³⁸⁰ was prepared by the standard procedure and had protracted ataxic activity. The 3,7-difluoro derivative of octoclothepin³⁶² had high and protracted ataxic activity and also high cataleptic and antiapomorphine effects in rats but a comparison with pimozide¹⁴⁵⁵ in the animal experiments was not in favour of our compound³⁶². Its analogues with N-(4-fluoroaralkyl) substituents⁴⁰⁵ instead of methyl had high and protracted ataxic activity but low cataleptic activity. The 3-methoxy-7-fluoro derivative of octoclothepin³⁶² was prepared by the standard way and was demethylated with boron tribromide to the 3-hydroxy-7-fluoro analogue which was rather active. The isomeric 3-fluoro-7-methoxy derivative of octoclothepin³⁶² could be prepared only by reduction of the corresponding enamine and its demethylation gave 738 ($R = 3\text{-F-7-OH-8-Cl}$). The 3-chloro-8-fluoro derivative of perathiepin and the corresponding enamine³³⁵ were prepared by the standard ways; the former is a rather strong CNS depressant agent but is low-cataleptic. The 7-fluoro derivative of octoclothepin (737, $R = 7\text{-F-8-Cl}$) is an interesting compound³⁴⁰: ten times less toxic than octoclothepin and more active in the antiapomorphine tests in rats; its 755 analogue was also prepared and transformed to

the octanoate as a potential depot neuroleptic. The isomeric 7-chloro-8-fluoro compound is less interesting. The corresponding enamines **739** were also synthesized³⁴⁰. The 6,9-difluoro derivative of perathiepin (**737**, R = 6,9-F₂) was prepared smoothly but was found practically inactive³⁹⁵.

The substituent in position 8 (the neuroleptic substituent) in molecules like **737**, **739**, **755** and **756** is in most cases connected with appearing of neuroleptic and anti-schizophrenic activity but unfortunately also with high cataleptic activity which indicates the unwanted extrapyramidal side effects. For this reason, the discovery of clozapine¹⁴⁵⁶ as a noncataleptic piperazinotricycle which showed very useful anti-schizophrenic activity and had the atom of chlorine as the nuclear substituent in the quasi-symmetrical position corresponding in our series to position 2, was an impetus for searching after further noncataleptic neuroleptics⁵²⁰ and our team participated intensively in these efforts³²². Very early, we had doclothepin (**737**, R = 2-Cl), prepared by the general method²³⁶, which had relatively strong ataxic activity but was much weaker than octoclothepin and was, therefore, considered uninteresting. By the standard methods, the following 2-substituted derivatives of perathiepin (**737**) and noroxythiepin (**755**) were prepared in the search after noncataleptic neuroleptic agents: 2-fluoro³²³, 2-chloro^{236,323}, 2-bromo³²³, 2-iodo³²³, 2-nitro³⁶⁰ (nitration of **734** (R = H) gave the 11,11-dinitro derivative³³³ and was thus not of synthetic value), 2-amino³³³, 2-acetamido³³³, 2-methoxy³³⁴, 2-hydroxy³⁶⁰, 2-methylthio³³⁴, 2-methyl³⁹⁰, 2-trifluoromethyl³³⁴, 2-(dimethylsulfamoyl) (ref. ³³⁴), 2-acetyl³³³; most of these compounds with the exception of the 2-chloro compounds, were found to be noncataleptic, having low ataxic activity and mostly without influence on the level of homovanillic acid in the rat brain striatum which means lack of antidopaminergic activity.

Both of the 2-chloro compounds – doclothepin (**737**, R = 2-Cl) and docloxythiepin (**755**, R = 2-Cl) were also practically noncataleptic, rather strongly ataxic and clearly antidopaminergic. Docloxythiepin was selected as the candidate for clinical trials³²². It was prepared not only by the substitution reaction of **736** (R = 2-Cl) with 2-(1-piperazinyl)ethanol³²³ but also by reduction of the enamine **764** (R = 2-Cl) with zinc and acetic acid³⁶¹. The starting enamine was prepared from **784** together with **785** by the action of 2-(1-piperazinyl)ethanol in the presence of potassium tert-butoxide³⁶¹; the participation of the dehydro compound **786** as an intermediate cannot be excluded. A simplified method of synthesis of the intermediate (5-chloro-2-(phenylthio)phenyl)acetic acid using the Willgerodt reaction and 2,5-dichloroacetophenone as the starting material³⁷⁵ made docloxythiepin relatively easily accessible. Out of the possible metabolites of docloxythiepin, the following were prepared³⁹²: S-oxide, N-oxide, S,N-dioxide, des(hydroxyethyl) **741** (R = 2-Cl), its S-oxide, the ethylenediamine **787** and its S-oxide, and finally the primary amine **788** and its S-oxide. This primary amine was prepared from **734** (R = 2-Cl) by the Leuckart reaction via the N-formyl derivative which was formed together with the heptacyclic pyridine derivative **789**. Out of the hydroxyl-

ated derivatives of docloxythepin as further potential metabolites, only 6-hydroxy⁴¹⁰ and 8-hydroxy³⁵¹ were prepared; an attempt to prepare the 7-hydroxy compound³⁵¹ was interrupted in the stage of 735 (R = 2-Cl-7-OCH₃). Some esters of docloxythepin with hydrophilic acids (e.g. methoxyacetic, morpholinoacetic) were prepared as potential prodrugs⁴⁸⁸ but did not prove interesting; neither docloxythepin decanoate³²³ did awake attention. Out of the docloxythepin analogues 790 (2-Cl; X = O, S; R = CH₃, C₂H₅, C₆H₅; n = 2, 3) only the 3-methoxypropyl and 2-(methylthio)ethyl compounds⁴⁸³ had properties of noncataleptic neuroleptics (free of antiapomorphine activity against stereotypies in rats and increasing the homovanillic acid concentration in the rat brain striatum); the similar octclothepin analogues (790, 8-Cl) are incisive neuroleptics with cataleptic, antiapomorphine and strong ataxic activities⁴⁸³.

The first pharmacological studies^{1457,1458} proved that docloxythepin possesses an intensive sedative activity but is practically devoid of cataleptogenic and antiapomorphine effects. In contrast to clozapine, it did not produce the central antioxotremorine effect in mice. These data were supplemented¹⁴⁵⁹ by studies of antagonism to amphetamine-induced stereotypies, inhibition of conditioned reactions and protective effect from the adrenaline toxicity. It was also found to antagonize the N,N-dimethyltryptamine-induced hyperthermia¹⁴⁶⁰. Electroencephalographic studies in rabbits and rats^{1458,1461} suggested that docloxythepin had a certain degree of anticholinergic and antidopaminergic activities. Biochemical studies^{1462,1463} proved that docloxythepin raises the homovanillic acid level in rat corpus striatum, and consequently enhances the dopamine turnover in a similar way like clozapine and other neuroleptics. A contribution to the pharmacokinetics was the determination of docloxythepin level in the rat blood and bile^{1464,1465}. A more profound pharmacokinetic study in rats was carried out with [10-¹⁴C]labelled compound¹⁴⁶⁶. In the urine of rats given labelled or unlabelled substance, there were detected¹⁴⁶⁷ three S-oxides and two N-oxides. Comparison with the synthetic standards suggested that the metabolites were the docloxythepin derived S-oxide, N-oxide, S,N-dioxide, and des(hydroxyethyl) S-oxide. The mechanism of docloxythepin S-oxidation was investigated in the rat liver in vitro¹⁴⁶⁸. In view of the suspected hepatotoxicity in dogs¹⁴⁶⁹, docloxythepin was approved solely for phase 1 clinical trial, i.e. single administration to healthy volunteers. In this trial, it was compared with clozapine¹⁴⁷⁰ in the same dosage. Docloxythepin produced a mild hypotensive effect lasting longer than that after clozapine. Subjectively, docloxythepin was reported as a stronger sedative and its action as longer lasting than that of clozapine. Similarly to clozapine, docloxythepin modified the EEG recordings¹⁴⁷¹ but its effect was stronger and longer lasting owing to its two to four times higher milligram efficacy; nevertheless its further development was discontinued.

Docloxythepin proved in principle to be the correct molecule. For this reason, its slight modifications were investigated. The synthesis of the compounds used in general the standard procedure. Introduction of further chlorine atoms into the aromatic nu-

clei were tried first. The 3-chloro derivative (791, R = 3-Cl) was noncataleptic, mildly sedative but without effect on the homovanillic acid level in the rat brain⁴⁷¹. The 4-chloro and 4,8-dichloro derivatives (791, R = 4-Cl, 4,8-Cl₂) were evaluated only in behavioural tests⁴¹⁸ : they were noncataleptic and only weakly sedative. The 6-chloro compound (791, R = 6-Cl) was almost noncataleptic and showed some anti-dopaminergic activity⁴⁹² (weaker than clozapine). The 7-chloro compound (791, R = 7-Cl) was more interesting being in the homovanillic (HVA) test more active than clozapine and almost noncataleptic⁴⁹². The most interesting proved to be the 8-chloro compound (791, R = 8-Cl) whose molecule contains the neuroleptic as well as the pseudoneuroleptic substituent (positions 8 and 2) (refs^{236,492}). It is a multipotent psychotropic and neurotropic agent with a high affinity to striatal dopamine receptors, a low influence on the HVA level, almost noncataleptic and free of the antiapomorphine effects, with a high antiamphetamine effect, strong tranquillizing and hypothermic activity, and moreover, antihistamine, antispasmodic and strong α -adrenolytic action. None of these compounds, however, was recommended for preclinical research. Another series of compounds, containing in their molecules the neuroleptic and at the same time the pseudoneuroleptic substituent, were the 2-halogeno-8-isopropyl compounds⁴⁶⁵ out of which 791 (R = 8-CH(CH₃)₂) and its 2-fluoro analogue were clearly cataleptic. On the other hand, the iodo compound 792 was noncataleptic, had high affinity to dopamine receptors in striatum in the [³H]spiperone binding assay (higher than clozapine) and raised the level of HVA in striatum more potently than clozapine. It was devoid of antiapomorphine activity (stereotypies in rats) and was a medium strong tranquillizer. In general, it was an interesting noncataleptic neuroleptic agent which resembled clozapine by its activity profile; its further development was prevented by two facts : difficulties with the synthesis and presence of iodine in the molecule.

Simultaneously with docloxythepin, 2-chloro-7-fluoro derivatives 737, 755 and 756 (R = 2-Cl-7-F) were synthesized³²³ and attracted attention by their low acute toxicity and high ataxic activity in mice. On the other hand, they displayed medium cataleptic activity in rats and for this reason their studies were discontinued. After the failure of docloxythepin, we returned to this interesting type and attempted to suppress the cataleptogenic character by finding a suitable N-substituent⁴⁹³. This happened using 2-(aminocarbonyl)ethyl to this end and we arrived at compound 793, called cloflumide in the form of the methanesulfonate^{502,520}. Its synthesis started from 3-fluorothiophenol and used the Willgerodt reaction for preparing the intermediate (5-chloro-2-(3-fluorophenylthio)phenyl)acetic acid which was cyclized to 734 (R = 2-Cl-7-F). The final step consisted either in the addition of 741 (R = 2-Cl-7-F) to acrylamide⁴⁹³ or in the substitution reaction of 736 (R = 2-Cl-7-F) with 3-(1-piperazinyl)propionamide⁵⁵¹. Cloflumide proved to have strong sedative and ataxic activity in mice^{1472,1473}, inhibited significantly the apomorphine-induced agitation but not the stereotypies, it was quite

active in the test of inhibition of apomorphine emesis in dogs and five times more active than clozapine in the test of apomorphine-induced climbing behaviour in mice. It increased intensively the HVA level in corpus striatum and tuberculum olfactorium of the rat brain¹⁴⁷⁴ (clozapine had only 10% of activity in both brain structures mentioned). Cloflumide had also important affinity to dopamine receptors in both brain structures ([³H]spiperone binding assay). Its pharmacokinetics was studied using [³H]cloflumide in rats¹⁴⁷⁵. Because of some doubts about the statement that cloflumide is noncataleptic at 50 mg/kg orally⁴⁹³, the study of cataleptic effect in rats was repeated and it was found^{520,521} that the ED₅₀ is slightly below of 50 mg/kg; cloflumide was thus identified as being only low-cataleptic which resulted in interruption of its development. The 6-fluoro derivative of docloxythepin³⁸⁰ (791, R = 6-F) and the 8-fluoro derivative of doclothepin³²³ (737, R = 2-Cl-8-F) were synthesized but their activity was not interesting.

11-Substituted derivatives of perathiepin did not escape to our attention. The known 11-methyl ketone 734 was transformed via 735 and 736 (R = 11-CH₃) to 737 (R = 11-CH₃) with unknown configuration²¹² which was much less active than 737 (R = H). Attempts to prepare 11-methyl- and 11,11-dimethyl derivatives of 734 by cyclization reactions of 2-(2-(phenylthio)phenyl)propionic and 2-methyl-2-(2-(phenylthio)phenyl)propionic acid⁴⁶¹ led to mixtures out of which an oily product C₁₅H₁₂OS, characterized as 734 (R = 11-CH₃), was isolated with difficulties; side reactions were cleavage of one methyl group and the passage into the thioxanthene series. Similar experience was made with the cyclization of 2-phenyl-2-(2-(phenylthio)phenyl)acetic acid⁵⁵¹ with polyphosphoric acid or phosphoric ester. Seven products including the wanted 734 (R = 11-C₆H₅) were isolated and identified (two of them thioxanthene derivatives). On the other hand it was possible to prepare ketones 734 (R = 8-Cl-11-CH₂C₆H₅, 8-Cl-11-(2-dimethylaminoethyl), 8-Cl-11-(3-dimethylaminopropyl), 8-Cl-11-(2-methyl-3-dimethylaminopropyl)) by the following way³⁴⁶ : 2-(2-(4-chlorophenylthio)phenyl)acetonitrile was C-alkylated (sodium amide) with the corresponding chlorides, the obtained nitriles could be hydrolyzed only to the stage of the corresponding amides which were cyclized to 734 with polyphosphoric acid. The ketones obtained were reduced with sodium borohydride to *cis*-8,11-disubstituted 735 which were transformed to the corresponding *trans*-736; the synthesis of 8-chloro-11-substituted 737 was not carried out.

Ketones 734 (R = H, 8-Cl, 2-Cl, and 8-OCH₃) were brominated to the corresponding 11-bromo ketones^{212,300,361,437}. Their substitution reactions with 1-methylpiperazine gave mixtures of equal parts of the 11-oxo-perathiepins (737, R = H, 2-Cl, 2-OCH₃) which are little active, and the diketones 794 (R = H, 2-Cl, 2-OCH₃) undergoing easily the benzilic acid rearrangement to thioxanthene derivatives^{212,300}. The ketone 734 (R = 11-Br-8-Cl) was reacted with 2-(1-piperazinyl)ethanol and the product 755 (R = 2-Cl-11-oxo) was reduced to *cis*-735 (R = 2-Cl-11-OH). All attempts³⁶¹

to remove selectively the 11-OH group and transform the alcohol to docloxythepin (791, R = H) failed. Oxidation of 734 (R = H) with hydrogen peroxide in boiling acetic acid²¹² gave the S,S-dioxide of 794 (R = H). Mannich reaction of 734 (R = H) resulted in 795 which was reduced to 796 with undetermined configuration²¹²; both compounds were inactive. Wolff - Kishner reduction (Huang - Minlon modification) of 734 (R = H, 8-Cl) gave the 10,11-saturated compounds 797 (R = H, 2-Cl) (refs^{207,298}). Three di- and trisubstituted 797 were obtained as by-products of reduction of the corresponding enamines 739 with zinc and acetic acid^{362,413}.

Nitrosation of 741 (R = H) gave 798 (R¹ = R² = H) which was reduced with lithium aluminium hydride²¹² to 799 (R¹ = R² = H). Similar reactions in the 2-chloro, 8-chloro and 2,8-dichloro series⁴³⁶ led to 799 which were transformed by reactions with benzaldehydes to hydrazones 800, prepared as potential anticonvulsants but which were found only to be tranquillizers. Substitution reactions of 736 (R = 8-Cl, 8-SCH₃) with 2-methylpiperazine or 2,5-dimethylpiperazine gave the corresponding 801 and 802 which were transformed via the N-formyl derivatives³⁴⁸ to the corresponding N-methyl compounds 801 and 802; as neuroleptics these compounds are much less active than the piperazine-C-nonmethylated analogues.

Substitution reaction of 736 (R = 8-Cl) with octahydropyrrolo[1,2-*a*]pyrazine gave the stereochemically inhomogeneous 803 which proved a relatively highly potent neuroleptic on parenteral administration⁴³⁷. Substitution reactions of 736 (R = 8-Cl, 8-SCH₃) with 8-methyl-3,8-diazabicyclo[3.2.1]octane and 3-methyl-3,8-diazabicyclo[3.2.1]octane²⁶⁶ resulted in 804 and 805 (R = Cl, SCH₃); the former displayed a high degree of neuroleptic activity.

The chloro compounds 736 (R = H, 8-Cl) were transformed to amines 806 by reactions with dimethylamine²⁰⁷, 2-diethylaminoethylamine²⁰⁷, pyrrolidine²⁵⁷, piperidine²⁰⁷, 4-hydroxypiperidine²¹² and 4-(ethoxycarbonyl)-4-phenylpiperidine²⁰⁷; these products were inactive as neuroleptics. The primary amines 807 (R = H, Cl) were obtained by the Leuckart reaction via the corresponding N-formyl compounds^{207,367} (these were reduced to 808); further transformations led to the pargyline analogue 809 (R = Cl) having not pargyline-like activity³⁶⁷, and to the amineptine¹⁴⁷⁶ analogue 810 (R = Cl), found to be a mild tranquillizer³⁶⁷. The homopiperazine analogue 811 (R = H) of perathiepin had only 10% of its ataxic activity²¹². A systematic search after antidepressants among the 2-chloro-10-amino-10,11-dihydrodibenzo[b,f]thiepins⁵⁴² led to 812 having the pharmacological profile of a potential antidepressant. Compound 807 (R = Cl) was used to prepare a series of carbamates and ureas as potential anticonvulsants³⁶⁷; some of them really displayed this type of activity.

The phenolic ketone 734 (R = 6-OH) was transformed to several aminoalkyl ethers as potential antidepressants⁵²⁹; only 813 showed indications in this line. The alcohols 735 treated with 2-dimethylaminoethyl chloride and sodium amide gave ethers 814 (R

= H, Cl, OCH₃) showing ataxic and also cataleptic activity, i.e. the neuroleptic character^{207,235,238}. Compound 735 (R = 8 = Cl) reacted with 2-bromoethanol in the presence of boron trifluoride etherate giving 815 which underwent substitution reaction with N-monosubstituted piperazines resulting in products⁴⁵⁶ like 816. These compounds were interesting low-cataleptic neuroleptic agents with strong ataxic activity, significantly active in the antiapomorphine tests in rats, free of the adrenolytic component, little toxic, and clearly raising the HVA level in the rat striatum.

This finding led to a systematic investigation in the isomeric noncataleptic 2-chloro series and resulted in clopithepin (817) as a further candidate for clinical testing as a noncataleptic neuroleptic agent⁵¹⁷. Its pharmacological profile was summarized in ref.⁵²⁰: less toxic and much less sedative than clozapine, at 50 mg/kg orally noncataleptic like clozapine, without influence on the apomorphine stereotypies in rats but at the same time antiemetic in the apomorphine test in dogs, in the test of apomorphine-induced climbing in mice less active than clozapine, stronger antidopaminergic than clozapine (the HVA assay and the [³H]spiperone binding assay), practically lacking the peripheral adrenolytic effect, and having a very low anticholinergic effect. After these encouraging results of comparison of clopithepin with clozapine, the comparison with chlorpromazine⁵⁵¹ gave less favourable results and clopithepin was dropped.

Alkylation of 734 (R = H) with 2-dimethylaminoethyl chloride (sodium amide) gave mixtures of the enol ether 818 (major) and the C-alkylated product 819; use of an excess of the alkylating agent led to 818 and 820 which was separated²⁵⁷; acid hydrolysis of 820 resulted in homogeneous 819.

Azeotropic distillation of the mixture of 734 (R = 2-Cl), 2-bromoethanol and 4-toluenesulfonic acid in benzene⁵⁵¹ gave 821 which was transformed by substitution reaction to 822, the 10,11-dehydro analogue of clopithepin; the compound had a similar pharmacological profile like 817.

Via the corresponding isothiuronium chlorides, 736 (R = 2-Cl, 8-Cl) were transformed to the thiols 823 which were S-alkylated to the sulfides 824 (refs^{367,543}). The secondary amine 825 (R = 2-Cl) displayed a clear profile of an antidepressant⁵⁴³. Reactions of 823 (R = 2-Cl) with ethyl chloroalkanoates and the following hydrolysis gave acids like 826 (R = 2-Cl) displaying some antiinflammatory and analgetic activity⁵⁴³.

Dibenzo[*b,f*]thiepin derivatives with carbon bond to position 10 of the skeleton were also the object of our studies. In fact, the first goal in the series was the synthesis of the prothiadene analogue of formula 827. The synthesis was complicated by the fact that the reaction of 734 (R = H) with 3-dimethylaminopropylmagnesium chloride²⁰⁷ gave only 3% of 828 (due to the almost complete enolization of 734 under the conditions of the Grignard reaction); the product was easily dehydrated to 827 (the exocyclic position of the double bond was confirmed by the UV spectrum). The product (827) did not show any indication of the antidepressant profile. Reactions of 736 (R = H, 8-

CH_3) with 1-methyl-4-piperidylmagnesium chloride led to compounds **829** ($\text{R} = \text{H}$, OCH_3) which have clearly the neuroleptic character^{212,238}. Especially the 8-methoxy compound **829** ($\text{R} = \text{OCH}_3$) is a strong neuroleptic. The practical equivalency of 4-methyl-1-piperazinyl with 1-methyl-4-piperidinyl as substituents in position 10 of the 10,11-dihydrodibenzo[*b,f*]thiepins from the point of view of the neuroleptic activity shows that not the stability (or better lability) of the bond between C-10 and the substituent but the distance of the strongly basic nitrogen atom and some site in (or on) the tricyclic carrier (maybe the substituent in position 8 including hydrogen) is of the primary importance.

Addition of bromine to **738** ($\text{R} = \text{H}$) gave the mixture of the stereoisomeric dibromides **830** which was dehydrobrominated with collidine to **831** (ref.²¹²). The similar chloro compound **832** was obtained either from (2-(phenylthio)phenyl)acetic acid or from **734** ($\text{R} = \text{H}$) with phosphoryl chloride and zinc chloride²¹². Heating **831** with cuprous cyanide in dimethylformamide gave **833** which was reduced with sodium borohydride to **834** (the corresponding carboxamide and carboxylic acid were also prepared⁴⁴⁵). Similar work starting from **738** ($\text{R} = 2\text{-Cl}$, $2,8\text{-Cl}_2$) was much more complicated due to the formation of mixtures of isomers⁴⁴⁵. The nitrile **834** could be alkylated to **835** and analogues⁴⁴⁵. Compound **836** was obtained from **834** by alkylation with 2-(2-tetrahydropyranloxy)ethyl chloride, by the following acid hydrolysis and reaction of the product with phosphorus tribromide⁴⁴⁵. Reactions of **836** with 4-substituted piperidines gave several potential antidiarrhoic agents out of which **837** proved the desired activity⁴⁸². Addition of 3-dimethylaminopropylmagnesium chloride to **833** and the following mild hydrolysis gave a mixture of *cis*- (major) and *trans*-**838** which were separated and characterized (NMR). The *cis*-isomer proved some antireserpine activity⁴⁴⁵.

An attempt to prepare A-hexahydro derivative of perathiepin (**839**, $\text{R} = \text{H}$) was unsuccessful; Kyburz and Dostert¹⁴⁷⁷ on the other hand were able to prepare *cis*- and *trans*-hexahydro derivatives of octoclotheon (**839**, $\text{R} = \text{Cl}$) and prove their neuroleptic inactivity. Unexpected formation of the dibenzo[*b,f*]thiepin skeleton was encountered in two cases. Reaction of bis(4-chlorophenyl) sulfide with chloroacetyl chloride in dichloromethane gave a crystalline $\text{C}_{16}\text{H}_9\text{Cl}_3\text{O}_2\text{S}$ which was preliminarily characterized as the hydrogen bond-fixed enol **840** ($\text{R} = \text{Cl}$) (ref.²⁹³). After several years the whole work was reinvestigated⁴⁶¹ and in addition to the sulfide mentioned, bis(4-fluorophenyl) sulfide, bis(4-bromophenyl) sulfide and bis(4-methylphenyl) sulfide were used. Compounds **840** ($\text{R} = \text{Cl}$, F , Br , CH_3) were obtained in all cases and only in the case of the methyl compound **841** was isolated as a second and main product (cf. refs^{1478,1479}). Another surprising case was the attempt to hydrolyze and decarboxylate 2-acetyl-2-(2-(3-methoxyphenylthio)phenyl)acetonitrile by heating with 85% phosphoric acid⁵⁵³; four products were isolated and two were identified as **842** and **734** ($\text{R} = 7\text{-OCH}_3$).

5.3.3.5 Dibenzo[*c,e*]thiepin, Dibenzoselenepin and Dibenzo[*b,f*]silepin Derivatives

5,7-Dihydro[*c,e*]thiepin (**843**) did not prove convenient as a starting material for preparing derivatives suitably functionalized in position 5 and 7. Its reaction with *n*-butyllithium resulted in the partial sulfur extrusion under formation of the 9,10-dihydrophenanthrene-9-thiolate anion (sulfur analogy of the Wittig rearrangement). Further reactions (hydrolysis, alkylation with 2-dimethylaminoethyl chloride, and spontaneous dehydrogenation) led to phenanthrene-9-thiol, N,N-dimethyl-2-(9-phenanthrylthio)ethylamine, N,N-dimethyl-2-(9,10-dihydro-9-phenanthrylthio)ethylamine and phenanthrene⁴⁹⁵. Only after oxidation to the sulfone **844**, the desired reactions became possible. Treatment with butyllithium and following carbonation afforded the acid **845** (together with the 5,7-diacid) which was transformed via the dimethylamide to **846**. Lithiation or treatment with sodium hydride and the following action of 3-dimethylaminopropyl chloride gave **847** showing clear indications of thy-moleptic activity as a potential antidepressant⁴⁹⁵.

Reaction of phthalide with selenophenol gave 2-(phenylselenomethyl)benzoic acid which was cyclized with polyphosphoric acid to dibenzo[*b,e*]selenepin-11(6*H*)-one (**848**). Its reaction with 3-dimethylaminopropylmagnesium chloride afforded **849** which was dehydrated to (*E*)-**850**, the selenium analogue of prothiadene²⁵⁴. Partial demethylation led to the northiadene analogue **851** and reduction with hydroiodic acid to the hydrothiadene analogue **852**. This compound was the most active one as a potential antidepressant in the series : it displayed similar antireserpine activities like imipramine²⁵⁴. Reactions of selenophenol and its 4-chloro derivative with 2-iodobenzoic acid gave the corresponding 2-(arylseleno)benzoic acids which were transformed in four steps to (2-arylselenophenyl)acetic acids. Their cyclization with polyphosphoric acid afforded dibenzo[*b,f*]selenepin-10(11*H*)-one (**853**, R = H) and its 8-chloro derivative²⁵³. The ketones were reduced to alcohols which, in turn, were transformed to the 10-chloro derivatives. Substitution reactions with 1-methylpiperazine afforded the selenium analogues of perathiepin and octoclotheon **854** (R = H, Cl); the latter proved a potent neuroleptic agent with high cataleptic and ataxic activity. The by-products of the substitution reactions were **855** (R = H, Cl). The enamines **856** (R = H, Cl) were prepared from **853** by the titanium tetrachloride method²⁵⁷.

The known 10-bromo-5,5-dimethyl-10,11-dihydrodibenzo[*b,f*]silepin (**857**) was transformed by the substitution reaction with 1-methylpiperazine³⁴⁸ to **858** which was practically devoid of neuroleptic activity.

5.3.3.6 Morphanthridine, Dibenz[*b,f*]azepine and 3,7-Methano-1*H*-2-benzazonine Derivatives

Schmidt reaction of anthraquinone, carried out in larger batches, produced 6,11-dioxo-5,6-dihydromorphanthridine which was reduced to 5,6-dihydro-11*H*-morphanthridine

(859). Its aminoalkylation and chloroacylation followed by further transformations produced compounds like 860 and 861 (ref.¹²⁰). Bischler – Napieralski reaction of N-formyl, N-acetyl and N-benzoyl derivatives of 2-benzylaniline by polyphosphoric acid and phosphoryl chloride²⁰⁵ gave 862 (R = H, CH₃, C₆H₅) which were reduced with sodium borohydride to 859 and its 6-methyl and 6-phenyl derivatives; the latter was transformed to the 6-phenyl derivative of 860. Out of the many morphanthridine derivatives prepared (there was collision with the teams of Cilag¹⁴⁸⁰ and Ciba¹⁴⁸¹), compound 860 (propazepine, prazepine (INN)) proved most interesting. It attracted first by its enormous antihistamine activity *in vitro*¹⁴⁸²; the fact that it was a position isomer of the anti-depressant imipramine, led to its pharmacological and biochemical comparison with this drug¹⁴⁸³⁻¹⁴⁸⁹ and finally to its clinical testing as an antidepressant^{1490,1491}. It was found active in patients with mental depressions in slightly higher doses than imipramine and it was not introduced to the therapeutic practice.

In the isomeric dibenzo[*b,f*]azepine series we published⁵¹⁴ a contribution to the synthesis of bis(norimipramine) (863) which was needed for a metabolic study. Dibenzo[*b,f*]azepine and its 10,11-dihydro derivative were acylated with chloroacetyl chloride and the products were reacted with 1-methylpiperazine giving 864 and 865. The latter displayed significant anti-ulcer and anticholinergic activities⁵¹⁴.

The Beckmann rearrangement of the oxime of 5,6,7,8,9,10-hexahydro-5,9-methanobenzocycloocten-10-one¹⁴⁸ gave the lactam 866 (UV, IR) which was reduced with lithium aluminium hydride to 867 (R = H). Conventional reactions led to its N-methyl and N-(2-phenylethyl) derivatives (867, R = CH₃, CH₂CH₂C₆H₅).

5.3.3.7 11*H*-Dibenzo[*b,e*]-1,4-dioxepin, 6*H*-Dibenzo[*b,e*]-1,4-oxathiepin, 11*H*-Dibenzo[*b,f*]-1,4-oxathiepin and 11*H*-Dibenzo[*b,e*]-1,4-dithiepin Derivatives

11*H*-Dibenzo[*b,e*]-1,4-dioxepin (depsidan, 868, X = O) and the corresponding lactone 869 (X = O) (depsidone) are known but they are not of use for preparing the potential anti-depressants and neuroleptics of general formulae 870 and 871 (X = O). For obtaining such side chain-functionalized compounds (like 870, X = O, R¹ = R² = H), it was necessary to cyclize intermediates like 873 (X = O, R¹ = R² = H) containing already the amino group in the side chain. 2-(2-Fluorophenoxy)benzaldehyde was reacted with 3-dimethylaminopropylmagnesium chloride and gave the intermediate 873 (X = O, R¹ = R² = H) which was cyclized with sodium hydride in dimethylformamide⁴³⁰. The obtained 870 (X = O, R¹ = R² = H) was found to have mild ataxic and anticataleptic activity; it is not a clear potential anti-depressant.

In the series of 6*H*-dibenzo[*b,e*]-1,4-oxathiepin, compounds 868 and 869 (X = S) were synthesized⁴³² but were also found unsuitable as precursors of 870 (X = S). The successful and already mentioned procedure, starting in this case from 2-(2-fluorophenoxythio)benzaldehyde and proceeding via 873 (X = S, R¹ = R² = H) led to the desi-

red **870** ($X = S$, $R^1 = R^2 = H$) which displayed antireserpine activity and the pharmacological profile of a potential antidepressant⁴³². Using 1-methyl-4-piperidylmagnesium chloride as the Grignard reagent and the same method for cyclization led to **871** ($X = S$, $R^1 = R^2 = H$) which was found to be a strongly ataxic tranquillizer with hypothermic activity which potentiated the cataleptic action of perphenazine⁴³² (similar profile like perathiepin). The passage to strong neuroleptics was realized by introduction of neuroleptic substituents as R^1 (Cl, OCH₃, CF₃, SCF₃) and by the combined introduction of fluorine as R^2 (refs^{431,433}). The synthesis of such compounds was possible by using the appropriately substituted benzaldehydes as the starting materials. The intermediates **873** and **874** were used in crude state and the final products **870** and **871** were isolated by chromatography in addition to at least eight different types of by-products. The most interesting of them were the 2-substituted thioxanthones (2-H, Cl, OCH₃, CF₃) resulting evidently from the starting aldehydes by treatment with sodium hydride⁴³³. The preferred product was cloxathiepin (**871**, $X = S$, $R^1 = Cl$, $R^2 = H$), the synthesis of which was repeated⁴⁶⁹ and which is in the line of intensity of the neuroleptic effect comparable with octoclolothepin but has much lower adrenolytic activity. Compound **871** ($X = S$, $R^1 = Cl$, $R^2 = F$) which is a strong incisive neuroleptic, was demethylated using the ethyl chloroformate method and the following hydrolysis. The secondary amine obtained was N-alkylated with 2-bromoethanol giving **872** ($X = S$, $R^1 = Cl$, $R^2 = F$) which was transformed to the decanoate⁴³¹ being a medium long-acting depot neuroleptic agent. Shifting the neuroleptic substituent to the pseudo-symmetrical position⁴⁶⁹ (2-(4-chloro-2-fluorophenylthio)benzaldehyde was used as the starting material) led to the practically noncataleptic compound **875** which, however, had also only low antidopaminergic activity (HVA assay).

Reactions of 2-hydroxythiophenol with 2-halobenzyl halides and their 5-substituted derivatives gave *11H*-dibenz[*b,f*]-1,4-oxathiepin **876** and derivatives with $R = Cl$ and CF₃. These compounds are useful intermediates. They can be lithiated or chlorinated in position of R^1 or first oxidized to the sulfones giving the carbanions by treatment with sodium hydride⁴²⁹. The following carbonation gave the acid **877** ($R = H$) which was transformed in three steps to **878** ($R = H$) with intensive antireserpine activity. Alkylation with 3-dimethylaminopropyl chloride led to **879** ($R = H, Cl$). The 11-chlorinated intermediates gave by treatment with 1-methyl-4-piperidylmagnesium chloride compounds **880** ($R = Cl, CF_3$) which are potent incisive neuroleptics⁴²⁹. The acid **877** ($R = H$) was transformed in six steps to the isobutaclamol open model **881** ($R = H$) which proved antidopaminergic activity in the HVA assay⁴⁸¹.

Reaction of benzene-1,2-dithiol with 2-bromobenzyl bromide in dimethylformamide in the presence of potassium carbonate and copper or the cyclization of 2-(2-bromophenylthiomethyl)thiophenol under similar conditions resulted in *11H*-dibenzo[*b,e*]-1,4-dithiepin (**882**). This also was lithiated and transformed to the acid **883** and

to the dimethylaminoalkyl derivatives **884** ($n = 2, 3$) which display high antagonistic activity against reserpine-induced hypothermia in mice⁴³⁰ like potential antidepressants.

5.3.3.8 Dibenz[*b,f*]-1,4-oxazepine, Dibenz[*b,f*]-1,4-thiazepine and 5*H*-Dibenzo-[*b,e*]-1,4-diazepine Derivatives

The Bischler – Napieralski reaction approach was used for preparing dibenz[*b,f*]-1,4-oxazepines **885** – **887** (R^1 and $R^2 = H$ or Cl). Their catalytic hydrogenation on palladium led to the 10,11-dihydro analogues **888** which were aminoalkylated to **889** having some antihistamine, peripheral anticholinergic and antiserotonin effects¹⁹⁰.

Reactions of methyl thiosalicylate with 2-chloronitrobenzene and 2,5-dichloronitrobenzene, the following reduction of the nitro group and thermic cyclization afforded the lactams **890** and **891** which were reduced with lithium aluminium hydride to 10,11-dihydrodibenzo[*b,f*]-1,4-thiazepine and its 8-chloro derivative **892** ($R = H, Cl$). These compounds^{122,134} were transformed to a series of N-(aminoalkyl) and N-(aminoacyl) derivatives displaying antihistamine, antireserpine, antiserotonin, local anaesthetic and spasmolytic properties^{1482,1486}. Compounds **893** ($R = H, Cl$) are cyclic homologues of promazine and chlorpromazine without displaying really interesting properties. The Bischler – Napieralski reaction approach leading to **894** – **896** enabled the synthesis of the 11-methyl and 11-phenyl derivatives of homo-promazine (**897**, **898**) having also antireserpine and antiserotonin activities²⁰⁴.

Following our hypothesis assuming that the antischizophrenic effect of the non-cataleptic neuroleptic clozapine could be explained by its metabolic conversion to the 2-hydroxy derivative (metabolic introduction of a neuroleptic substituent), we synthesized³⁷⁶ via **899** and **900** the supposed metabolite **901**; it was shown that this compound per se is noncataleptic but potentiates the cataleptic effect of perphenazine. This result cannot be considered a confirmation of our hypothesis.

5.3.3.9 Thieno[2,3-*c*]-2-benzothiepin Derivatives

This tricyclic system was unknown before our work and the entry to it was the cyclization of 2-(2-thienylthiomethyl)benzoic acid (obtained from phthalide and 2-thiophenethiol) to **902** ($R = H$) first with polyphosphoric acid in boiling toluene in a low yield²⁰⁰, much better with phosphorus pentoxide in toluene²²⁹ which was also used for preparing the 6-substituted ketones²²⁹ **902** ($R = Cl, Br$). The first task of the work was to prepare the thiophene isostere of our antidepressant prothiadene. Reactions of **902** ($R = H, Cl, Br$) with 3-dimethylaminopropylmagnesium chloride gave the alcohols **908** which were dehydrated by acid catalyzed reactions to **903** (refs^{200,229}).

Whereas **903** ($R = Cl, Br$) showed some activity in tests typical for neuroleptics²²⁹, **903** ($R = H$) (dithiadene, bisulepin (Czech. Pharmacopoeia)) had only low central activity (including the effects in the antireserpine tests) but displayed a surprisingly high

antihistamine activity *in vivo* (significantly more active than promethazine²⁰⁰). The crude 903 (R = H) was separated by crystallization of the hydrogen sulfate which led to isolation and characterization (IR, NMR) of the major (*E*)-isomer (dithiadene) and the minor (*Z*)-isomer which, more recently, was prepared also by the Wittig reaction^{312,440}. Both isomers were oxidized to the 10-oxides³¹² (sulfoxides). The dithiadene sulfone (10,10-dioxide) was prepared from 902 (R = H) which was oxidized with hydrogen peroxide in acetic acid to the sulfone which was transformed to 908 (R = H) sulfone and this was dehydrated²²⁹. The (*Z*)-isomer of dithiadene has similar antihistamine activity like dithiadene³¹²; out of the S-oxidated dithiadene derivatives, which were prepared as potential metabolites, only (*E*)-dithiadene S-oxide maintains antihistamine activity (lower than the parent compound). Dithiadene was selected for pre-clinical and clinical studies in the form of the hydrochloride. Its pharmacology was described^{1188-1190,1492,1493}, various methods of its analytical determination were elaborated¹⁴⁹⁴⁻¹⁴⁹⁷ and the pharmacokinetic study in rats¹⁴⁹⁸ was carried out with the [10-³⁵S]labelled substance. The metabolic study in rats¹⁴⁹⁹ led to identification of the sulfoxide and the N-demethylated compound³¹² as metabolites. Dithiadene was introduced on the market (Dithiadene[®]) first as an oral, more recently also in injections on the basis of extensive clinical studies¹⁵⁰¹⁻¹⁵¹⁵ for being used in the treatment of allergic states (including asthma) and for the hyperkinetic syndrome in children. A combination of dithiadene with (–)-phenylephrine underwent preclinical testing¹⁵¹⁶ as a potential agent for the common cold.

Compound 904 (R = Cl) was prepared from 902 (R = Cl) via 909 (R = Cl) as a potential neuroleptic agent³¹². It was a mixture of geometrical isomers which did not show the character of a neuroleptic. Reaction of 902 (R = H) with 2-(dimethylamino-methyl)cyclohexylmagnesium chloride gave a mixture of stereoisomeric 910 (R = H) of which three homogeneous components were separated⁴⁷⁷. Dehydration of the mixture gave (*E*)- and (*Z*)-905 (R = H) which were isolated. Their mixture, which was tested, showed antireserpine activity in two tests and thus the character of a potential antidepressant. Reactions of 902 (R = H, Cl) with 1-methyl-4-piperidylmagnesium chloride afforded 911 (R = H, Cl) (ref.⁴⁴⁰). In the former case, compound 913 was a by-product⁴⁴⁰ (formed evidently by the 1,6-addition and the following spontaneous dehydrogenation). The alcohols 911 were dehydrated to 906 (R = H, Cl) out of which the former was found to be an extremely potent antihistamine, antireserpine and anti-serotonin agent²²⁹. Structural and pharmacological similarity between the antimigraine agent pizotifene¹⁵¹⁷ and our 906 (R = H) (pipethiadene) (ref.¹⁵¹⁸) led to development of our compound as a potential anti-migraine agent in the form of hydrogen (+)-tartrate⁴⁴³. As standards for metabolic studies the following pipethiadene derivatives and analogues were prepared by conventional methods⁴⁴⁰: S-oxide, N-oxide, S,N-dioxide, nor-pipethiadene (N-demethyl analogue), its S-oxide and finally the CH₃-[²H₃] labelled compound. Pharmacology, biochemical pharmacology and toxicology of pipe-

thiadene was described in several papers¹⁵¹⁹⁻¹⁵³⁵, the pharmacokinetic study in rats used [³H]pipethiadene^{1536,1537}. The metabolic studies working with rat urine and faeces and using the N-methyl deuterated substance and GC-MS identified as metabolites the S-oxide, N-oxide, S,N-dioxide, norpipethiadene N-oxide and Ar-hydroxylated norpipethiadene S-oxides^{1538,1539}. After clinical testing^{1540,1541}, pipethiadene was released for practical use (Migrenal[®]). The sulfonium analogue 907 (R = H) of pipethiadene was prepared from 902 (R = H) via 912 (R = H) (ref.⁵⁰⁰). The reaction of the ketone with 3,4,5,6-tetrahydro-2*H*-thiopyran-4-ylmagnesium bromide was complicated by the formation of 914, again a product of 1,6-addition and dehydrogenation. The final product had only mild antihistamine and anticholinergic effects⁵⁰⁰.

Reduction of 902 (R = H) with sodium borohydride produced the alcohol 915. An attempt at its transformation to the 4-chloro compound by treatment with hydrogen chloride gave only the ether 916 and reaction of 915 with sodium amide and 2-dimethylaminoethyl chloride gave surprisingly the 4-saturated 917 (ref.²²⁹). Acetylation of 902 (R = H) and of 917 gave the 2-acetylated derivatives^{229,440}. The tosylate²²⁹ and mesylate^{490,516} of 915 in situ were used as equivalents of the unknown chloride for preparing the ethers 918 – 920 (refs^{229,490}) and the amines 921 – 923 (refs^{229,516}). Compounds 918 and 922 had some ataxic and antihistamine activities, 919 and 920 were in addition anticonvulsant. Compound 923 had some H-1 antihistaminic effect but in comparison with oxatomide it lacked the antianaphylactic effect. Reduction of 903 (R = H) and 911 (R = H) with hydroiodic acid gave the saturated 924 and 925, the former being highly active in a series of tests considered predictive of antidepressant efficacy⁵³⁸.

5.3.3.10 Further Thienobenzothiepins

Cyclization of 5-bromo-2-(2-thienylthio)benzoic acid in the form of the chloride with zinc chloride afforded 6-bromothieno[2,3-*c*]-1-benzothiepin-4(10*H*)-one (926, R = Br) together with 5-bromo-1,2-benzodithiolo-3-one⁵²¹. Reaction with 3-dimethylaminopropylmagnesium chloride and the following dehydration gave 927 (R = Br) as the (*E,Z*)-mixture which was separated and the components were characterized. They were then transformed by treatment with cuprous cyanide in hexamethylphosphoric triamide to (*E*)- and (*Z*)-927 (R = CN). Both isomers proved to be potential antidepressants and selective inhibitors of 5-hydroxytryptamine re-uptake in the brain. Cyclization of 2-(3-thienylthiomethyl)benzoic acid with phosphoric ester in toluene gave thieno[3,2-*c*]-2-benzothiepin-10(5*H*)-one (928) which was transformed in two steps³²⁹ to 929 (a homogeneous hydrochloride but assignment of configuration was not possible) having very intensive H-1 histamine antagonistic activity. Cyclization of 2-(2-bromo-3-thienylthiomethyl)benzoic acid with phosphorus pentoxide in toluene gave 3-bromothieno[3,4-*c*]-2-benzothiepin-10(5*H*)-one (930) as the minor product³²⁹ in addition to the major 928 (debromination proceeded prior to cyclization).

The thieno[2,3-*b*]-1-benzothiepin system was more typical for our work. The ketone 931 was obtained by cyclization of (2-(2-thienylthio)phenyl)acetic acid with phosphorus pentoxide in toluene. It was reduced to 932 which was transformed on the one hand to the ether 933, and via 934 to 935 (peradithiepin) to the other; compound 936 was simultaneously formed by elimination²⁴². Peradithiepin showed the strong atactic activity like octoclolohepin and also important peripheral antiserotonin action. The enamines 937 and 938, prepared from 931 using the titanium tetrachloride method, had enormous cataleptic activity²⁷³; compound 938 was transformed to the caprylate as a potential depot neuroleptic²⁹². Cyclization of (2-(5-chloro-2-thienylthio)phenyl)acetic acid gave 939 ($R^1 = Cl$, $R^2 = R^3 = H$) which was transformed in three steps to the 2-chloro derivative of 940 (ref.²⁶³), a strong, incisive neuroleptic agent. Shifting the atom of chlorine to the pseudo-neuroleptic position 7 led via 939 ($R^2 = Cl$, $R^1 = R^3 = H$) to the 7-chloro derivative of 941, a low-cataleptic tranquillizer lacking the anti-dopaminergic activity *in vivo*⁴⁴². Introduction of fluorine into position 8 led via the (4-fluoro-2-(2-thienylthio)phenyl)acetic acid and 939 ($R^3 = F$, $R^1 = R^2 = H$) to the 8-fluoro derivative of 940, a neuroleptic with high atactic and cataleptic activities but lacking the antiapomorphine effect³⁸⁷. Finally, the difficult synthesis of 940 ($R^1 = Cl$, $R^2 = H$, $R^3 = F$) was carried out along the same lines⁴⁰⁹ and the product was found to be only a tranquillizer with protracted action.

5.3.3.11 [1]Benzothiepino[2,3-*b*]pyridines and Further Heterotricycles with a Seven-Membered Central Ring

An attempt to attack the thieno[2,3-*c*]-2-benzoselenepin system²⁸³ was unsuccessful. Attempts to cyclize the acid 942 (obtained from phthalide and selenophenol) with polyphosphoric acid gave on the one hand the product of decarboxylation (943), and the Pailer's¹⁵⁴² benz[*d*]indeno[1,2-*b*]pyran-5,11-dione (944) on the other.

Attempts to cyclize the acids 945 and 946 did not lead in our hands to the desired [1]benzothiepino[3,4-*b*]pyridine-5(11*H*)-ones^{229,290}. On the other hand, (2-(phenylthio)-3-pyridyl)acetic acid and its 4-chlorophenyl and 4-isopropylphenyl analogues cyclized easily^{288,289} to [1]benzothiepino[2,3-*b*]pyridine-6(5*H*)-ones 947 ($R = H$, Cl , $CH(CH_3)_2$) which were transformed to the corresponding 948 (together with 949) and to the enamines 950. Compounds of this series are much weaker neuroleptics than the corresponding dibenzo[*b,f*]thiepins.

Cyclizations of 2-(2-thienylthio)acetanilide and -benzanilide by the Bischler - Napieralski reaction²⁴³ gave the thieno[2,3-*b*]-1,5-benzothiazepines 951 and 952. They were reduced to 953 and these were alkylated with 3-dimethylaminopropyl chloride. Out of the obtained 954, only that having $R = CH_3$ showed some antihistamine and anti-serotonin activity but it was devoid of the CNS activity. The synthesis of 5,11-dihydropyrido[2,3-*b*]-1,4-benzodiazepine-6-one (955) was investigated in connection

with the synthesis of the anti-ulcer agent pirenzepine⁵¹⁴; several interesting by-products were identified (cf. 614). An attempt to cyclize (5-ethyl-2-(2-thienylthio)-3-thienyl)acetic acid³⁸⁷ did not lead to the desired 6-ethyldithieno[2,3-*b*;3',2'-*f*]thiepin-3(4*H*)-one.

5.3.3.12 Heterotricycles with Angular Annulation and a Seven-Membered Central Ring

Reactions of 8-fluoro-5-(4-fluorophenyl)-1,3,4,5-tetrahydro-1-benzazepine-2-thione with acetic, propionic, methoxyacetic, (methylthio)acetic, benzoic, phenylacetic and nicotinic acid hydrazides in boiling butanol⁴²¹ resulted in the 1-substituted 6-(4-fluorophenyl)-9-fluoro-5,6-dihydro-4*H*-*s*-triazolo[4,3-*a*]-1-benzazepines **956** (*R* = CH₃ etc.) having no CNS activity in nontoxic doses. 1-Phenyl-4,5-dihydro-3-benzazepine-2(1*H*,3*H*)thione and its 8-chloro derivative reacted with acetohydrazide to give products which were assigned to be 3-methyl-11-phenyl-5,6-dihydro-11*H*-*s*-triazolo[3,4-*b*]-3-benzazepines **957** (*R* = H, Cl) (ref.⁵⁶¹).

6-Aryl-8-halo-4*H*-*s*-triazolo[4,3-*a*]-1,4-benzodiazepines represent the family of the extremely potent hypnotic agent triazolam (**958**, *R*¹ = Cl, *R*² = 2'-Cl) whose synthesis was slightly modified⁴⁵¹. Reactions of 7-chloro-5-(2-chlorophenyl)-1,3-dihydro-1,4-benzodiazepine-2-thione with a series of S-substituted 2-mercaptoacetic acid hydrazides afforded a series of triazolam analogues⁴⁵¹ out of which **959** (*R*¹ = Cl, *R*² = 2'-Cl) was the most active member as an anticonvulsant but still weaker than triazolam. Similar compounds **958** and **959** with *R*² = 2'-CH₃, 2'-OCH₃, 2'-SCH₃, 3'-Cl-4'-OCH₃ and 3',4'-(OCH₃)₂ were almost inactive^{510,524}. On the other hand compounds **958** and **959** with *R*¹ = Br and *R*² = 2'-Cl are almost equipotent in the tests for anticonvulsant activity with the *R*¹ = Cl analogues⁴⁵³. Reactions of the said thione and its 8-Br and 2'-H analogues with alkanesulfonylglycine and alkanesulfonylalanine hydrazides gave the series of **960** and **961** with *R*³ = CH₃ or C₂H₅ which have only slightly the profile of anxiolytics and hypnotics⁵²⁵. Compounds of the series **961** were characterized (NMR) as mixtures of two diastereoisomers (it was attempted to explain this phenomenon). A compound of the series with *R* = Br, *R*¹ = Cl and *R*² = 2'-Cl was transformed by substitution reactions with N-monosubstituted piperazines⁴⁴¹ to compounds **962** in which the member having *R*³ = (CH₂)₂OCH₃ was very active as an anticonvulsant and was more active than triazolam against pentetrazole-induced convulsions in mice. Compounds **962** with *R*³ = 2-phenoxyethyl or 2-(phenylthio)ethyl were prepared via **962** (*R*³ = H) and by its alkylation with 2-phenoxyethyl bromide and 2-(phenylthio)ethyl bromide⁴⁴¹. The homologues **963** were prepared from the corresponding thione and the 2-(4-substituted 1-piperazinyl)acetic hydrazides⁴³⁸. The most simple **963** (*R*¹ = Cl, *R*² = 2'-Cl, *R*³ = CH₃) is a rather active anticonvulsant.

In the *6H*-thieno[3,2-*f*]-1,2,4-triazolo[4,3-*a*]-1,4-diazepine series compounds **966** were similarly prepared⁴⁶⁴ via **964** or **965**; as CNS agents, they were found less active than the chlorobenzo analogues.

5.3.4 Heterotricyclic Compounds with Eight-Membered Rings

Attempts to cyclize 3-(2-(phenylthio)phenyl)propionic acid and its chloro derivative did not lead to *6,7-dH*,*1*-dihydrobenzo[*b,g*]thiocin-5-ones but afforded the annelated thioxanthenes **967** and **968** as the most typical products³⁸¹, formed probably via the spirocyclic cations **969**; indanones of the type **970** were also formed. For obtaining the eight-membered ketone, it was necessary to use the Dieckmann cyclization of ethyl 3-(2-(4-chloro-2-ethoxycarbonylphenylthio)phenyl)propionate (sodium hydride in toluene) and the high dilution technique³⁹⁹. The product was **971** which was hydrolyzed and decarboxylated to **972**. Two further steps led to **973**, the B-homo-octoclothepin lacking the character of a neuroleptic. 2-(Benzylthiomethyl)benzoic acid did not cyclize to *5H*-dibenzo[*c,f*]thiocin-12(*7H*)-one with polyphosphoric acid; 2-thiophthalide was the only product characterized²⁰⁰.

Beckmann rearrangement of the oxime of **376** gave the lactam **974** which was reduced with lithium aluminium hydride to *5,6,7,12-tetrahydro[*b,e*]azocine* (**975**). Aminoalkylation led to **976**, a homologue of the antidepressant imipramine, displaying high antireserpine activity²⁰⁷. Bischler – Napieralski cyclizations of 2-(2-phenylethyl)-formanilide, -acetanilide and -benzanilide led evidently to *11,12-dihydrodibenzo[*b,f*]-azocines* **977** which, however, were hydrolyzed during attempts at their transforming to salts to the amino ketones **978**. Only in the case of **977** (*R* = C₆H₅), which was reduced *in situ* with sodium borohydride, compound **979** was obtained²⁴⁰.

6,12-Dihydrodibenzo[*b,f*]dithiocin (**980**) was obtained as a product of distillation of the crude 2-(benzylthio)benzyl chloride²²² and as a by-product of cyclization of 2-(2-bromophenylthiomethyl)thiophenol⁴³⁰ in addition to **607** and **882**. The fluorinated compound **981** was obtained as a by-product of the preparation of 4-fluoro-2-(5-chloro-2-thienylthio)benzyl chloride⁴⁰⁹. Reactions of (2-(2-aminophenylthio)phenyl)acetic acid and its 2-amino-5-chloro analogue with polyphosphoric acid led to *5H*-dibenzo[*b,g*]-1,4-thiazocine-6(*7H*)-ones **982** and **983** (ref.²⁹⁸); the former was transformed by treatment with isobutylamine and titanium tetrachloride to **984** (*R*¹ = H). Reaction of (2-(2-acetamido-5-chlorophenylthio)phenyl)acetic acid with polyphosphoric acid in boiling toluene afforded **985** (*R*¹ = Cl) as one of the products²⁹⁸ (interaction with toluene, a case of the extramolecular Bischler – Napieralski reaction). The lactam **982** was transformed by treatment with phosphorus pentasulfide to the corresponding thiolactam⁴³⁹ which reacted with hydrazine and gave instead of the wanted hydrazone the corresponding azine.

5.4 HETEROTETRACYCLIC COMPOUNDS

5.4.1 *Annelated Thioxanthene and Dibenzothiepin Derivatives*

Cyclization of 2-(1-naphthylthio)benzoic acid with sulfuric acid gave benzo[c]thioxanthone (986) which was reacted with 3-dimethylaminopropylmagnesium chloride and the mixture of 987, obtained after dehydration, was separated to both isomers²¹⁷. 2-(1-Naphthylthiomethyl)benzoic acid and its 5-chloro derivative were cyclized to benzo[e]naphtho[1,2-*b*]thiepin-7(12*H*)-ones 988 (R = H, Cl) which were converted in two steps²⁰⁰ to homogeneous 989 (R = H, Cl); the former showed important peripheral antiserotonin effect. 2-(5-Indanylthio)benzoic acid was transformed in six steps to 8,9-dihydro-7*H*-indeno[5,6-*b*]-1-benzothiepin-11(12*H*)-one (990) which was further transformed to the perathiepin analogue 991 and to the corresponding enamine³⁰⁷; both compounds were weak neuroleptic agents. Similar processing of 2-(2-naphthylthio)benzoic acid³²⁵ led to benzo[b]naphtho[2,3-*f*]thiepin-12(13*H*)-one (992, R = O) and further to 992 (R = 4-methyl-1-piperazinyl) and the corresponding enamine (weak neuroleptics). 2-(1-Naphthylthio)benzoic acid was converted in five steps³¹⁰ to benzo[b]naphtho[2,1-*f*]thiepin-7(8*H*)-one (993, R = O) which was transformed in three further steps to the perathiepin analogue 993 (R = 4-methyl-1-piperazinyl) which is almost inactive³¹⁰.

Cyclization of 8-(phenylthio and 4-chlorophenylthio)-1-naphthoic acids with polyphosphoric acid gave mixtures of benzo[f]naphtho[1,8-*b,c*]thiepin-12-ones (994, R = H, Cl) and the isomeric 986 (9-H, 9-Cl) (ref.³³²). Ketones 994 were the primary products which were converted to 986 by using higher temperature or longer reaction time (reversibility of the Friedel – Crafts cyclization). The ketone 994 (R = H) was transformed to the prothiadene analogue 995 (R = H) which proved to be a clear thyomoleptic agent with antireserpine and anticataleptic actions. The ketone 994 (R = Cl) was used to prepare the octoclothiepin analogue 996 (R = Cl) lacking the character of a neuroleptic agent.

One of the products of alkylation of 707 (R = H) with 1,2-dibromoethane⁴⁴⁶ was identified by a detailed analysis of the NMR spectra⁵⁰⁴ and by the X-ray crystallographic study¹²⁰⁴ as 11,12-dihydro-6*H*-6,12-methanodibenzo[*b,f*]thiocin-12-carbonitrile (997). It was oxidized to the 5-oxide and 5,5-dioxide and reduced with aluminium hydride to 998. Methylation by the Eschweiler – Clarke method resulted in 999 which was inactive as a potential antidepressant.

5.4.2 *Berbine and Berbane Derivatives*

N-(3-Methoxyphenylacetyl) derivatives of 2-(3-methoxyphenyl)ethylamine and homoveratrylamine were cyclized by the Bischler – Napieralski reaction and the products were reduced with sodium borohydride to the corresponding 1,2,3,4-tetra-

hydroisoquinolines¹⁹⁸ which were subjected to reactions with formaldehyde (Pictet – Spengler reaction) to give the berbines **1000** and **1001** out of which the latter was new. The former was reduced with lithium and ethanol to an unstable tetrahydro derivative, characterized as **1003**. Similar synthesis of **1002**, carried out in connection with the chemistry of some dopamine analogues⁴⁴⁸, started from N-(2-(3,4-dimethoxyphenyl)-1-(4-tolyl)-3,4-dimethoxyphenylacetamide.

Further experimental work was carried out in connection with total syntheses in the field of reserpine analogues¹⁸⁸. Alkylation of 2-(3-methoxyphenyl)ethylamine with ethyl *trans*-2-(bromomethyl)cyclohexaneacetate proceeded under simultaneous intramolecular acylation and formation of **1004**. This was cyclized with phosphoryl chloride and the product was directly reduced with sodium borohydride to 7-methoxyberbane (**1006**) or the crude product of cyclization was transformed to the perchlorate **1005** which was reduced with zinc in perchloric acid to the same **1006**.

Reactions of 2-(3-methoxyphenyl)ethylamine and homoveratrylamine with the aldehyde ester **1007**, the alicyclic component of the Woodward's total synthesis of reserpine¹⁵⁴³⁻¹⁵⁴⁵ gave the corresponding Schiff bases which were immediately reduced with sodium borohydride and cyclized to **1008** ($R^1 = R^2 = H$; $R^1 = OCH_3$, $R^2 = H$) (refs^{162,188}). Methanolysis produced the corresponding **1009** which were acylated with 3,4,5-trimethoxybenzoyl chloride followed with sodium perchlorate giving the perchlorates **1011**. Reduction with sodium borohydride gave the alloberbanes **1012**, whereas reduction with zinc in acidic medium gave the epialloberbanes **1013**, corresponding stereochemically to racemic reserpine ("methoxy- and dimethoxy-despирролодесерпидине"). The series was completed by Pelz et al.¹⁵⁴⁶ by synthesis of the mescaline analogue **1013** ($R^1 = R^2 = OCH_3$). The analogue of **1009** in the alloberbane series (**1012**, $R^1 = R^2 = H$) was transformed to the 4-bromobenzenesulfonic ester which was subjected to hydrogenolysis with lithium aluminium hydride giving the alcohol **1014** of the alloberbane series¹⁸⁸. Starting with 2-phenylethylamine¹⁸⁸, the syntheses proceeded until the stage of the seco-lactams (type **1010**); their cyclization by the Bischler – Napieralski reaction did not proceed. In the "despирролоресерпине" series, there was a collision with the work of the Roussel – Uclaf team^{1547,1548}.

Similar synthesis starting from homopiperonylamine¹⁸⁶ resulted in the most interesting member of the series, mediodespide (b) (1015). In comparison with reserpine, this compound was a hypotensive agent without any significant CNS depressant activity. Separation of both lines of the reserpine effects by modification of structure was the main goal of the extensive work undertaken in the series. On the basis of pharmacological and biochemical experiments, mediodespide¹⁵⁴⁹⁻¹⁵⁵¹ was selected for clinical trials; this endeavour was prevented by difficulties with its synthesis in larger scale.

5.4.3 Remaining Heterotetracyclic Compounds

Whereas the described synthesis¹⁵⁵² of N-methylmorphinan (1016) was found easily reproducible, the attempts to prepare its 3-nor¹⁰⁷ and 9-nor analogue¹⁵⁵³ were unsuccessful. Reaction of 10-(2-hydroxyethyl)-10,11-dihydrodibenzo[b,f]thiepin-10-carbonitrile with phosphorus tribromide in benzene⁴⁴⁵ gave 2'-imino-4',5'-dihydrospiro(dibenzo[b,f]thiepin-10(11H),3'(2'H)-furan) (1017), i.e. the spirocyclic imidate. Its acid hydrolysis afforded the spirocyclic lactone 1018.

An attempt to carry out the substitution reaction of *trans*-2,11-dichloro-10-(2-dimethylaminoethyl)-10,11-dihydrodibenzo[b,f]thiepin with 1-methylpiperazine³⁴⁶ led to cyclization to the methochloride of 11-chloro-1-methyl-2,3,3a,12b-tetrahydro-1*H*-pyrrolo[2,3-*m*]dibenzo[b,f]thiepin (1019, *n* = 1), displaying some spasmolytic and anti-histamine activities. A similar reaction of 2,11-dichloro-10-(3-dimethylaminopropyl)-10,11-dihydrodibenzo[b,f]thiepin³⁴⁶ produced the methochloride of 12-chloro-1-methyl-1,2,3,4,4a,13b-hexahdropyrido[2,3-*m*]dibenzo[b,f]thiepin (1019, *n* = 2) having similar activity. Compound 890 and its 2-chloro and 8-chloro derivatives were transformed by the action of phosphorus pentasulfide to the thiones affording by treatment with hydrazine the corresponding "hydrazones". Their reactions with triethyl orthoformate gave 1020 ($R^1, R^2 = H, Cl$) which were brominated to 1021. Substitution reactions with 1-methylpiperazine afforded 1022 ($R^1 = R^2 = H; R^1 = H, R^2 = Cl; R^1 = Cl, R^2 = H$) which are rather toxic and lack CNS activity⁴³⁹.

2-(2-Fluorophenylthio)phenylmagnesium bromide reacted with 1-(ethoxycarbonyl)-4-piperidone and the obtained tertiary alcohol was cyclized with sodium hydride in dimethylformamide⁴⁸⁰ to 1'-(ethoxycarbonyl)spiro(dibenzo[b,e]-1,4-oxathiepin-6,4'-piperidine) (1023). Reduction with sodium dihydridobis(2-methoxyethoxy)aluminate gave 1024 having antireserpine activity in two tests but only low affinity to imipramine binding sites in the rat brain.

5.5 HETEROPENTACYCLIC COMPOUNDS

5.5.1 [1]Benzothiepino[2,3,4-*ed*]pyrido[2,1-*a*]isoquinoline Derivatives

The extremely high and strictly stereoselective neuroleptic activity of the pentacyclic butaclamol¹⁵⁵⁴ and isobutaclamol¹⁵⁵⁵ induced us to the effort to synthesize analogues containing the dibenzo[b,f]thiepin tricycle in the skeleton⁴⁷⁰. Compound 834 was reduced with aluminium hydride to 10-(aminomethyl)-10,11-dihydrodibenzo[b,f]thiepin. This was formylated with acetic formic anhydride and the formamide obtained was cyclized by the Bischler – Napieralski reaction to 1025. Addition of methyl vinyl ketone gave a mixture of stereoisomeric 1026 which was separated by chromatography and on the basis of analogy^{1554,1555}, the major component was assigned to be the 3b,9a-*cis*-isomer and the minor one the correct 3b,9a-*trans*-isomer.

This was reacted with *t*-butylmagnesium chloride and isopropyllithium which resulted in mixtures out of which 1027 and 1028 were isolated. The secondary alcohol 1029 was a by-product. 5-*t*-Butyl-3b,9a-*trans*-3b,4,5,6,7,9,9a,10-octahydro-[1]benzothiepino-[2,3,4-*ed*]pyrido[2,1-*a*]isoquinoline-5-ol is the 15-thia analogue of isobutaclamol and displays high affinity to dopamine receptors in the striatum in the rat brain (which confirms the correctness of the assignment or relative configuration of C-3b and C-9a).

5.5.2 2*H*-Benzo[*g*][1]benzothieno[2,3-*a*]quinolizine Derivatives

The named system corresponds to that of 1-deaza-1-thiayohimbane. In this area, our team¹⁸⁷ tried to synthesize racemic 1-deaza-1-thiadeserpine. 2-(3-Thianaphthetyl)-ethylamine was reacted with 1007, the Schiff base formed was reduced *in situ* with sodium borohydride and the acetoxylactam was transformed via the hydroxylactam to 1030. The cyclization with phosphoryl chloride and reaction with sodium perchlorate gave the quaternary perchlorate 1031. Its reduction with sodium borohydride resulted in the crystalline racemic 1-deaza-1-thia-3-isodeserpine (1032). Reduction of 1031 with zinc in the presence of perchloric acid gave a mixture of equal amounts of 1032 and of an oily base which was evidently the wanted racemic 1-deaza-1-thiadeserpine. After our work, an independent synthesis of racemic 1-deaza-1-thiadeserpine was carried out¹⁵⁵⁶ (for the synthesis of the skeleton, cf. refs^{1557,1558}).

5.5.3 Yohimbane Derivatives and Reserpoids

In the middle of fiftieth, *Rauwolfia* alkaloids⁵⁶³ and reserpine (11,17 α -dimethoxy-16 β -methoxycarbonyl-18 β -(3,4,5-trimethoxybenzoyloxy)-3-epi-20-alloyohimbane) as their most important representative, were in the centre of general attention in the field of drug research. The Woodward's total synthesis of reserpine¹⁵⁴³ was followed by efforts to use its principle for technical purpose^{564,1544} and for the synthesis of its close analogues^{1544,1559-1562}. The author of this review expressed his view that the total synthesis became the most progressive method of drug manufacture¹⁴¹ and initiated extensive experimental work in the line of total synthesis of reserpoids using the principle of the Woodward's synthesis^{140,153}. Ten years later, the interest in this topic was practically over²⁴¹. The work of our team started with working up of the individual steps of both Woodward's variants¹⁵⁴³ and of the Velluz' modifications¹⁵⁴⁴ of the preparation of the alicyclic component 1007 of the total synthesis of reserpine.

The first step, i.e. the stereoselective addition of benzoquinone to methyl vinylacrylate giving 1033 was developed to a high-yield process¹⁴⁶. Also the reduction of this compound with aluminium isopropoxide to 1035 was importantly improved¹⁴⁶. The idea to start from isopropyl vinylacrylate and to proceed via 1034 was found erroneous¹⁶¹: the Meerwein reduction of 1034 stopped in the stage of 1037 (only reduction of the sterically more accessible keto group). The next step was the reaction of 1035 with

bromine in methanol giving the bromo compound **1038** which could be transformed to the methoxy compound **1039** either directly, i.e. by treatment with sodium methoxide¹⁴⁶ or better via the unsaturated lactone **1044** obtained from **1038** either by dehydrobromination with collidine¹⁴⁶ or with potassium acetate in boiling acetone¹⁹⁹. All steps of the Woodward synthesis¹⁵⁴³ proceeded stereoselectively, i.e. the relative configurations on all centres in **1033**, **1035**, **1038** and **1044** are defined but the compounds are racemates.

One of the aims of our work was to carry out the resolution in some of these early stages of the synthesis. Compound **1038** gave by alkaline hydrolysis the unsaturated hydroxy acid **1046** which was resolved in the form of the salt with brucine¹⁵¹. Only the (–)-acid **1046** was obtained crystalline and it was cyclized with dicyclohexylcarbodiimide to (–)-**1044**. The following addition of methanol afforded (+)-**1039** which was found identical with the Velluz' optically active substance obtained differently¹⁵⁴⁴ and found to belong to the natural reserpine series. More recently¹⁷⁶, it was found more favourable to resolve racemic **1046** with (–)-ephedrine. The unwanted (–)-ephedrine salt of (+)-**1046** crystallized quantitatively and from the mother liquor, the desired (–)-**1046** was obtained in excellent yield. The problem of resolution was thus solved but further work proceeded in the racemic series. Nevertheless there was another episode aiming at an easy passage to the optically active series. Compound **1035** was oxidized with chromic anhydride in acetic acid¹⁴⁶ to the ketone **1047** and it was tried to reduce the keto group enantioselectively with baker's yeast¹⁶⁶ and then with six different microorganisms¹⁷². Most surprisingly, the only isolated product was **1048**, i.e. the saturation of the double bond proceeded instead of the expected reduction of the keto group. In the meantime, Roy and Wheeler¹⁵⁶³ studied the catalytic hydrogenation of **1047** in the presence of rhodium and palladium catalysts and obtained **1048** which was carefully characterized. With regard to the fact that they found some differences in properties of their product and those given by us^{166,172}, they expressed doubts on the correctness of the structure of our product. There came to a common reinvestigation of the case²⁰⁹. The samples were exchanged and were directly compared (melting points, IR spectra, reactions). The identity of the samples was established and correctness of structure **1048** for the yeast metabolite was proven. Another independent synthetic experiment started from **1036**, obtained by acetylation¹⁴⁶ of **1035**. Addition of bromine and dehydrobromination¹⁷⁰ gave **1049** which reacted with silver acetate in boiling dioxane under allylic rearrangement and gave the unwanted **1050**. Further steps leading from **1039** to **1007** were carried out in principle according to the literature already cited¹⁵⁴³⁻¹⁵⁴⁵. It was found that the unsaturated lactone **1044** adds not only methanol (leading to **1039**) but also the most various nucleophiles¹⁹⁶, e.g. ethanol, amines (cf. the dimethylamine adduct **1040**) and also the Grignard reagents (cf. the methylmagnesium iodide addition and hydrolysis product **1041** and the similar ethylmagnesium bromide product **1042**). It was also reduced with sodium borohydride to **1043**. These addition

reactions gave extensive opportunities for the synthesis of reserpoids modified in position 17 which, unfortunately, were only partly used (the use of 1041 – 1043 will be mentioned in the next paragraphs).

In the final stages, the first attack was directed to racemic reserpine¹⁶⁰ and used combination of the published¹⁵⁴³⁻¹⁵⁴⁵ and the own modifications. 6-Methoxytryptamine (529, R = 6-OCH₃) was reacted with 1007 and the obtained Schiff base was reduced with sodium borohydride under cyclization to 1051a (R¹ = 6-OCH₃). Cyclization with phosphoryl chloride and reaction with sodium perchlorate gave 1052a (R¹ = 11-OCH₃) which was reduced with zinc in perchloric acid and deacylated by methanolysis to a mixture 3:1 of methyl reserpate 1053b (R¹ = 11-OCH₃) and methyl 3-isoreserpate 1054b (R¹ = 11-OCH₃); this was separated by chromatography. Acylation of methyl reserpate with 3,4,5-trimethoxybenzoyl chloride using a modified procedure gave 72% of racemic reserpine (1053c, R¹ = 11-OCH₃). The procedure used was shorter than those of Woodward¹⁵⁴³ and Velluz¹⁵⁴⁴. A similar scheme was adopted for the synthesis of racemic deserpidine¹⁶⁰ (1053c, R¹ = H) which was easier because the reduction of 1052a (R¹ = H) with zinc and perchloric acid proceeded stereoselectively and the following methanolysis produced the homogeneous methyl deserpidate (1053b, R¹ = H). Two modified syntheses of racemic deserpidine (1053c, R¹ = H) were carried out by our colleagues^{1564,1565} who completed also a similar synthesis of racemic 19-methyldeserpidine^{1566,1567} with undetermined configuration on C-19.

Our team proceeded then to the synthesis of reserpine analogues modified in ring A, i.e. in positions 10, 11 and 12. The starting materials were 5-fluoro-, 5-methyl-, 5-methoxy-, 5-ethoxy-, 5-(methylthio)- and 7-(methylthio)-tryptamine¹⁴⁷ (529, R = 5-F, 5-CH₃, 5-OCH₃, 5-OC₂H₅, 5-SCH₃ and 7-SCH₃). The syntheses of the corresponding A-substituted racemic deserpidines proceeded via 1051a – 1051c and 1052c. In the synthesis of racemic 10-fluorodeserpidine¹⁶⁴ (1053c, R¹ = 10-F), the reduction of 1052c (R¹ = 10-F) proceeded easily and resulted directly in the homogeneous product which was found to have similar hypotensive activity like racemic deserpidine but its sedative activity was ten times lower than that of racemic reserpine. This was a success because the separation of these two effects by molecular manipulation was just the main object of our efforts. The combination of these two very strong effects in the case of reserpine was its main disadvantage and resulted finally in the strong decrease of its use in the therapeutic practice in both of its lines: hypertension and schizophrenia. In cases of the 10-methyl-, 10-ethoxy- and 10-(methylthio)-deserpidines¹⁵⁶, the work was more complicated because the reductions of 1052c (R¹ = 10-CH₃, 10-OC₂H₅ and 10-SCH₃) with zinc in perchloric acid were not unequivocal and mixtures of the wanted 3-epialloyo-himbane and undesired alloyoimbane (3-iso) derivatives were formed which had to be separated by chromatography or by crystallization of the perchlorates. The prepared racemic 1053c (R¹ = 10-CH₃, 10-OC₂H₅, 10-SCH₃) had hypotensive and sedative reserpine-like activities somewhat lower than deserpidine¹⁵⁶. A similar situation was met

in the 12-(methylthio) series¹⁸⁵: the reduction of **1052c** ($R^1 = 12\text{-SCH}_3$) gave an inhomogeneous **1053c** ($R^1 = 12\text{-SCH}_3$) which was purified by chromatography and crystallization which led also to the isolation of the homogeneous 3-isomer **1054c** ($R^1 = 12\text{-SCH}_3$). Racemic 12-(methylthio)deserpipidine (methiopidine, **1053c**, $R^1 = 12\text{-SCH}_3$) proved a very interesting substance: a potent antihypertensive almost free of the sedative component of action^{1551,1568} (cf. also¹⁵⁶⁹). Its clinical trial was prevented only by its difficult accessibility.

A special case was the synthesis of racemic methyl O-(O-ethoxycarbonylsyringoyl)-10-methoxydeserpipidate¹⁵⁹ (**1053d**, $R^1 = 10\text{-OCH}_3$). Starting from 5-methoxytryptamine¹⁴⁷ and **1007**, the synthesis proceeded to **1051a** ($R^1 = 5\text{-OCH}_3$), this was cyclized with phosphoryl chloride and the product was transformed to the perchlorate **1052a** ($R^1 = 10\text{-OCH}_3$) which was reduced with zinc in perchloric acid. A 1:1 mixture of **1053a** and **1054a** ($R^1 = 10\text{-OCH}_3$) was obtained and separated by chromatography. The stereochemically correct (in all cases, the configuration at C-3 was settled by IR) **1053a** ($R^1 = 10\text{-OCH}_3$) was deacetylated by methanolysis and the product was acylated with O-(ethoxycarbonyl)syringoyl chloride in pyridine to the wanted **1053d** ($R^1 = 10\text{-OCH}_3$) which represented a structural combination of two hypotensive reserpoids in which the sedative component was importantly suppressed and which, therefore, were introduced to the antihypertensive pharmacotherapy: the partially synthetic methyl (–)-O-(O-ethoxycarbonylsyringoyl)reserpate^{1570,1571} (syrosingopine (INN), Singoserp[®]) and the totally synthetic (–)-10-methoxydeserpipidine^{1544,1572,1573} (methoserpipidine (INN), Decaserpyl[®]). In spite of this fact, our compound was not found interesting in this sense. It is necessary to add that our synthetic sequences in the reserpine field were carefully followed in all steps by paper chromatography¹⁵⁷⁴⁻¹⁵⁷⁶.

The last stage of our totally synthetic efforts in the reserpine field was the use of the epoxy lactones **1041** – **1043** which were obtained by addition of the Grignard reagents to **1044** and by its reduction with sodium borohydride¹⁹⁶. By their reactions with N-bromosuccinimide in dilute sulfuric acid^{173,203}, the bromohydrins **1055a** – **1055c** were obtained which were oxidized with chromic anhydride to **1056a** – **1056c**. The following reduction with zinc and acetic anhydride gave **1057a** – **1057c** (all in analogy with ref.¹⁵⁴³) which were *cis*-dihydroxylated with barium perchlorate with a small amount of osmium tetroxide to **1058a** – **1058c**. Oxidative cleavage with periodic acid followed by esterification with diazomethane led to the corresponding modified "alicyclic components" **1059a** – **1059c**.

In the methyl and ethyl series¹⁷³, **1059a** and **1059b** were reacted with 6-methoxytryptamine, the products were reduced *in situ* with sodium borohydride to **1060a** and **1060b** which were subjected to methanolysis yielding **1061a** and **1061b**. These compounds were esterified with 3,4,5-trimethoxybenzoyl chloride to **1062a** and **1062b**. The following Bischler – Napieralski cyclization with phosphoryl chloride and reaction with

the perchlorate anion afforded the perchlorates **1063a** and **1063b** which were reduced with zinc and perchloric acid to racemic 17α -methyl-17-demethoxyreserpine (**1064a**) and 17α -ethyl-17-demethoxyreserpine (**1064b**) which had similar hypotensive activity like reserpine but their sedative activity was importantly lower; especially ethyserpine (**1064b**) attracted the interest of the pharmacologists¹⁵⁶⁹. In the case of the 17-demethoxy compounds²⁰³, tryptamine was reacted with **1059c** and the product was transformed via **1060c** to **1063c**. Reduction with zinc in perchloric acid gave the racemic 17-demethoxydeserpidine (**1064c**) and reduction with sodium borohydride afforded the 3-isomer **1065c**.

Addition of diazomethane to **1044** and the following thermic decomposition of the product gave **1045** (ref.¹⁹⁶) which was reduced with sodium borohydride to **1066**, a stereoisomer of **1041**. This compound was used by Ernest¹⁵⁷⁷ in our team to the synthesis of the racemic 17β -methyl-17-demethoxyreserpic acid lactone and its 3-isoreserpic isomer. The same author¹⁵⁷⁸ equilibrated **1059c** in acid medium to a mixture with **1067** which was used for the synthesis of racemic apoyohimbine and opened the way to further yohimbane and epiyohimbane derivatives. The last contribution of Ernest¹⁵⁷⁹ consisted in the finding that the introduction of the γ -lactone ring into **1007** is connected with the isomerization to **1068** which was used for preparing racemic 3-iso-20-alloreserpic acid lactone.

Esterification of (–)-methyl reserpate, accessible by methanolysis of natural reserpine, was described¹⁵⁷⁰ as a partially synthetic way leading to new reserpoids in which the hypotensive and neuroleptic (sedative) components could be more or less separated. Our first contribution in this line¹⁸⁴ used the acylation of (–)-methyl reserpate with chlorides of 3,5-dimethoxy-4-ethoxybenzoic, 3,5-diethoxy-4-methoxybenzoic, 3,5-diethoxy-4-(ethoxycarbonyloxy)benzoic, 3,5-dimethoxy-4-methylbenzoic, phenoxyacetic and the three monomethoxyphenoxyacetic acids in pyridine. Out of the compounds obtained, the 3,5-diethoxy-4-methoxybenzoate (bishomoreserpine, **1069**) and the (4-methoxyphenoxy)acetate (methoxyphenoserpine, **1070**) proved rather interesting. Bishomoreserpine showed increased central activity in behavioural and biochemical tests^{1551,1569,1580-1582} and when used in psychopharmacotherapy as a neuroleptic agent, it could not be distinguished from reserpine⁹⁷³. The other compound, methoxyphenoserpine, on the other hand, appeared to be a "clean" antihypertensive with strongly diminished CNS effects with the exception of the ulcerogenic effect which is similar like with reserpine (refs^{1551,1568,1569,1581,1583,1584}). The utility of methoxyphenoserpine in the pharmacotherapy of hypertension was confirmed by clinical testing^{1585,1586}; one negative report¹⁵⁸⁷ in this line caused discontinuation of the clinical trials. The synthesis of a second series of (–)-methyl reserpate esters²⁰⁸ used mainly reactions of methyl reserpate with the acids in the presence of dicyclohexylcarbodiimide. The most interesting seemed to be the 2,4-dichlorophenoxyacetate (**1071**) showing an even more convenient ratio of hypotensive to sedative activity than methoxypheno-

serpine²⁰⁸, and the (4-methoxyphenylthio)acetate (methoxyphenthioserpine, 1072) which showed the same effect on the monoamine level in the brain and heart of mice like methoxyphenoserpine¹⁵⁵¹.

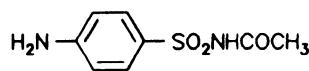
5.6 HETEROPOLYCYCLIC COMPOUNDS

Such compounds were obtained mainly as by-products (cf. already 789) and they are only mentioned. Reaction of compound 745 with 1-methylpiperazine³⁴⁹ gave a nitrogen-free crystalline compound C₃₂H₂₈O₄S₂ which was characterized (MS etc.) as 2,3,2',3'-tetramethoxydiprō(9*H*-thioxanthene-9,1'-cyclobutane-3',9'-9*H*-thioxanthene) (1073) (cyclodimerization of an olefin without conditions for photochemical reactions but without protection from the day-light). Furo[2,3-*m*;4,5-*m'*]bis(dibenzo[*b,f*]thiepins) (1074) accompany often the ketones 734 formed by cyclizations of (2-(arylthio)aryl)acetic acids with polyphosphoric acid especially when higher temperatures and longer reaction periods are used. The following 1074 were isolated and characterized: 1,9-difluoro³⁸⁰, 1,9-dimethyl⁴⁸⁷, 3,7-dichloro³⁵¹, 13,16-dichloro³⁵¹, 12,17-difluoro³⁸⁴, 3,7,12,17-tetrafluoro⁴¹², 12,13,16,17-tetramethoxy³⁴⁹, and 2,8-dichloro-3,7-difluoro³⁴⁰. We do not consider these compounds to be by-products but we presume their formation from the ketones 734 via the corresponding dienol ethers (formed by dehydration) and by their following spontaneous cyclization under dehydrogenation; for analogies, cf. refs¹⁵⁸⁸⁻¹⁵⁹⁰). In the dibenzo[*b,f*]selenepin series²⁵³, the similar 1075 was obtained and characterized. In the benzo[*b*]naphtho[2,1-*f*]thiepin series³¹⁰, compound 1076 was obtained.

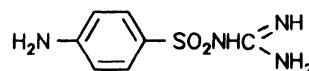
6 INDEX OF NONCHEMICAL NAMES OF THE ORIGINAL PRODUCTS

Name	Formula Number
acetylthiosulfocholine iodide	33
Alfadryl [®]	208
amizoptene	310
Antihistamin [®]	166
benzamsulfonium iodide	117
benzperidine	166
bishomoreserpine	1069
Bromadryl [®]	213
Bromadryl F [®]	213
carbmethosulfonium iodide	34

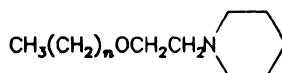
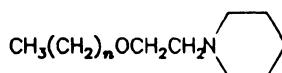
chloroperaptene	385
chlorproheptadiene	376
chlorproheptatriene	378
cloflumide	793
clopithepin	817
clorotepin (INN)	737 (R = 8-Cl)
Clotepin®	737 (R = 8-Cl)
Clotepin inj.®	737 (R = 8-Cl)
Clotepin oleosum inj.®	737 (R = 8-Cl)
cloxathiepin	871 (X = S, R ¹ = Cl, R ² = H)
cyclomethonium iodide	45
dehydroclothepin	739 (R = 8-Cl)
Dimecamin®	63
dimecamine	63
dinorthiadene	(E)-635 (R = H)
Dithiadene®	(E)-903 (R = H)
dithiadene	(E)-903 (R = H)
dithiotolperidine	199
doclothepin	737 (R = 2-Cl)
docloxythepin	755 (R = 2-Cl)
dosulepin (INN)	(E)-632 (R = H)
dothiepin (Brit. Approved Names)	(E)-632 (R = H)
embramine (INN)	213
embramine teoclone (INN)	213
Enterina®	2
ethiacine	457
ethyserpine	1064b
fluoxyphenonium bromide	267
guanisoline	528
hexadiphenium bromide	262
hexadiphensulfonium iodide	260


hexasonium iodide (INN)	260
hydrothiadene	637 (R = H)
isofloxythepin	755 (R = 3-F-8-CH(CH ₃) ₂)
Kinedryl®	208
mebrophenhydramine	213
mebrophenhydrinate	213
Mebryl®	213
Meclopin®	756 (R = 8-SCH ₃)
Meclopin inj.®	771
mecyclosulfonium iodide	436
mediodespidine	1015
medosulepin (Czech. Pharmacopoeia)	(E)-632 (R = 2-CH ₃)
Medrin®	213
meflophenhydramine	211
mephenhydramine	208
mephenhydrinate	208
Mesocain®	89
mesocaine	89
mesylphenacyrazine	518
Methiaden-Calcium®	(E)-632 (R = 2-CH ₃)
methiadene	(E)-632 (R = 2-CH ₃)
methiopidine	1053c (R ¹ = 12-SCH ₃)
methiothepin	737 (R = 8-SCH ₃)
methoxyphenoserpine	1070
methoxyphenthioserpine	1072
metitepine (INN)	737 (R = 8-SCH ₃)
Migrenal®	906 (R = H)
moxastine (INN)	208
moxastine teoclone (INN)	208
moxifetine	108
norhydrothiadene	658 (R = H)

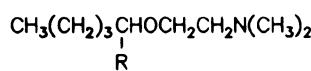
normethiothepin	741 (R = 8-SCH ₃)
noroctoclothepin	741 (R = 8-Cl)
noroxyclothepin	755 (R = 8-Cl)
noroxyclothepin decanoate	772
noroxythepin	755 (R = H)
norperathiepin	741 (R = H)
northiadene	(E)-634 (R = H)
octoclothepin	737 (R = 8-Cl)
octomethothepin	737 (R = 8-OCH ₃)
oxyclothepin	756 (R = 8-Cl)
oxyphenhydrazonium bromide	265
oxyphensulfonium iodide	264
oxyprothepin	756 (R = 8-SCH ₃)
oxyprothepin decanoate	771
oxyprothepin oenanthate	770
oxysonium iodide (INN)	264
oxythepin	756 (R = H)
penhexamine	43
penpentamine	44
peradithiepin	935
peraptene	384
perastine (INN)	166
perathiepin	737 (R = H)
perithiadene	647 (R = H)
phenamsulfonium iodide	93
phenoharman	589
pipethiadene	906 (R = H)
prazepine (INN)	860
proheptadiene	367
proheptatriene	377
propazepine	860



Prospasmin®	223
Prothiadene®	(E)-632 (R = H)
prothiadene	(E)-632 (R = H)
Prothidryl®	(E)-632 (R = H)
succinylsulfocholine iodide	28
succinylthiocholine iodide	27
succinylthiosulfocholine iodide	29
sulfocholine iodide	32
Syntospon®	260
Theadryl®	208
Thiamethon®	18
thiamethonium iodide	18
Thiospasmin®	260
Thiospasmin inj.®	264
trimethophenoxyamide	77
Xantedryl®	213
Xantedrylettae®	213

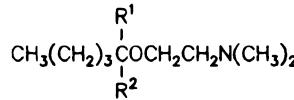


7 STRUCTURES OF COMPOUNDS PRESENTED IN THIS REVIEW

1

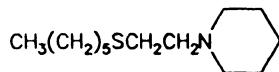


2

 $n = 1$ $n = 5$


3

4

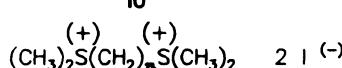
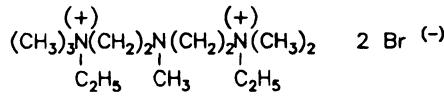
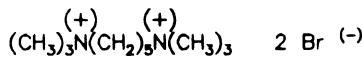


R

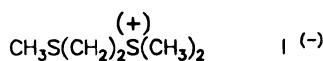
5

R¹R²

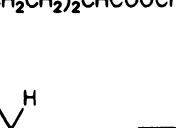
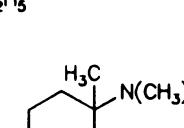
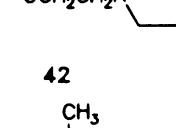
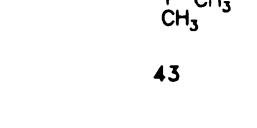
6

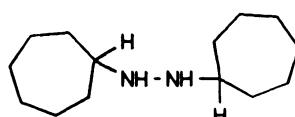




7

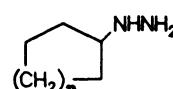


8

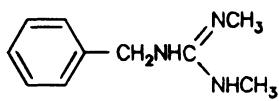




9

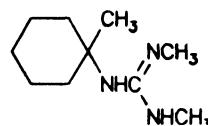


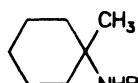
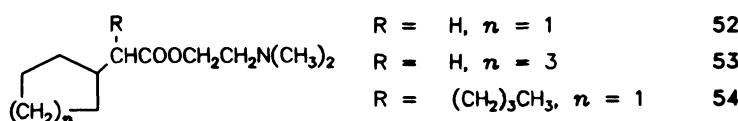
13



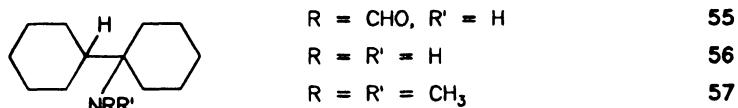
$\text{CH}_3\text{SCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{SCH}_3$	$(\text{CH}_3)_2\overset{(+)}{\text{SCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{S}(\text{CH}_3)_2}$	2 (-)
15	16	
$\text{RCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{R}$	$(\text{CH}_3)_2\overset{(+)}{\underset{\text{C}_2\text{H}_5}{\text{NCH}_2\text{CH}_2\text{SCH}_2\text{CH}_2\text{N}(\text{CH}_3)_2}}$	2 (-)
17	18	
$(\text{CH}_3)_3\overset{(+)}{\text{N}(\text{CH}_2)_n\text{N}(\text{CH}_3)_3}$	2 Br (-)	19
$(\text{CH}_3)_3\overset{(+)}{\text{NCH}_2\text{CH}_2\text{OCOCH}_2\text{CH}_2\text{COOCH}_2\text{CH}_2\text{N}(\text{CH}_3)_3}$	2 (-)	20
$(\text{C}_2\text{H}_5)_3\overset{(+)}{\text{N}(\text{CH}_2)_2\text{O}(\text{CH}_2)_n\text{O}(\text{CH}_2)_2\text{N}(\text{C}_2\text{H}_5)_3}$	2 (-)	21
$\underset{\text{CH}_3}{\text{C}_2\text{H}_5\overset{(+)}{\text{N}((\text{CH}_2)_2\text{O}(\text{CH}_2)_2\text{N}(\text{C}_2\text{H}_5)_3)_2}}$	3 (-)	22
$\text{C}_2\text{H}_5\overset{(+)}{\text{N}((\text{CH}_2)_2\text{O}(\text{CH}_2)_2\text{N}(\text{C}_2\text{H}_5)_3)_3}$	4 (-)	23
$(\text{CH}_3)_2\overset{(+)}{\underset{\text{R}}{\text{N}(\text{CH}_2)_2\text{S}(\text{CH}_2)_4\text{S}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2}}$	2 (-)	24
$(\text{CH}_3)_2\overset{(+)}{\text{S}(\text{CH}_2)_2\text{O}(\text{CH}_2)_5\text{O}(\text{CH}_2)_2\overset{(+)}{\text{S}(\text{CH}_3)_2}}$	2 (-)	25
$(\text{CH}_3)_2\overset{(+)}{\text{S}(\text{CH}_2)_2\text{S}(\text{CH}_2)_n\text{S}(\text{CH}_2)_2\overset{(+)}{\text{S}(\text{CH}_3)_2}}$	2 (-)	26
$(\text{CH}_3)_3\overset{(+)}{\text{N}(\text{CH}_2)_2\text{SCO}(\text{CH}_2)_2\text{COS}(\text{CH}_2)_2\text{N}(\text{CH}_3)_3}$	2 (-)	27
$(\text{CH}_3)_2\overset{(+)}{\text{S}(\text{CH}_2)_2\text{OCO}(\text{CH}_2)_2\text{COO}(\text{CH}_2)_2\overset{(+)}{\text{S}(\text{CH}_3)_2}}$	2 (-)	28
$(\text{CH}_3)_2\overset{(+)}{\text{S}(\text{CH}_2)_2\text{SCO}(\text{CH}_2)_2\text{COS}(\text{CH}_2)_2\overset{(+)}{\text{S}(\text{CH}_3)_2}}$	2 (-)	29
$(\text{CH}_3)_2\overset{(+)}{\text{S}(\text{CH}_2)_2\text{COO}(\text{CH}_2)_2\text{OCO}(\text{CH}_2)_2\overset{(+)}{\text{S}(\text{CH}_3)_2}}$	2 (-)	30


HOCH ₂ CH ₂ R	R = $\begin{array}{c} (+) \\ \\ \text{N}(\text{CH}_3)_2 \\ \\ (\text{CH}_2)_3\text{CH}_3 \end{array}$	(-)	31
	R = $\begin{array}{c} (+) \\ \\ \text{S}(\text{CH}_3)_2 \end{array}$	(-)	32
CH ₃ COSCH ₂ CH ₂ S(CH ₃) ₂	(+)	(-)	33
ROCOCH ₂ CH ₂ S(CH ₃) ₂	(+)	(-)	34
	R = CH ₃		
	R = C ₂ H ₅		35
(CH ₃) ₃ CCOOCH ₂ CH ₂ N(CH ₃) ₂			36
CH ₃ (CH ₂) _n COOCH ₂ CH ₂ N(CH ₃) ₂			37
(CH ₃ CH ₂ CH ₂) ₂ CHCOR			38
	In formulae 38-40		
CH ₃ SCH ₂ CH ₂ CHCOR	a, R = OH		39
R ¹	b, R = NH ₂		
CH ₃ CH ₂ S _~ CHCOR			40
CH ₃ CH ₂ CH ₂			
(CH ₃ CH ₂ CH ₂) ₂ CHCOOCH ₂ CH ₂ NHCOOC ₂ H ₅			41
	42		
	43		
	44		
	45	2 (-)	


46



47

48



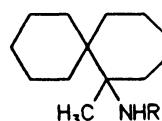
49

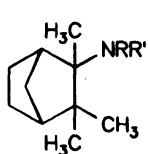
R = CSNHCH₃ 50R = C(=NCH₃)SCH₃ 51

R = H, n = 1 52

R = H, n = 3 53

R = (CH₂)₃CH₃, n = 1 54

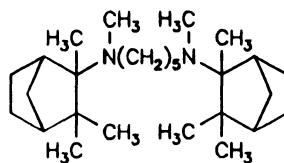

R = CHO, R' = H 55


R = R' = H 56

R = R' = CH₃ 57

58

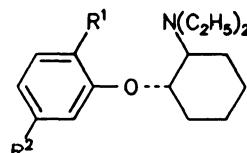
R = CHO 59


R = CH₃ 60

$R = H, R' = CH_3$ 61

$R = R' = H$ 62

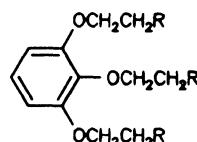
$R = R' = CH_3$ 63


64

$C_6H_5O(CH_2)_nR$

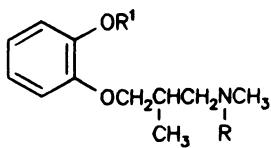
$R = N(C_2H_5)_2, n = 2$ 65

$R = N(CH_3)_2, n = 2$ 66

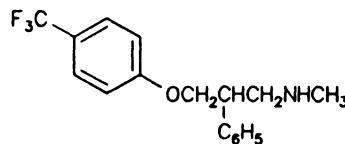

$R = N(CH_3)_2, n = 3$ 67

$R^1 = R^2 = H$ 68

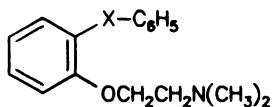
$R^1 = CH(CH_3)_2$ 69


$R^2 = CH_3$

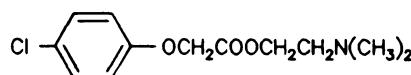
$R = N(C_2H_5)_2$ 70

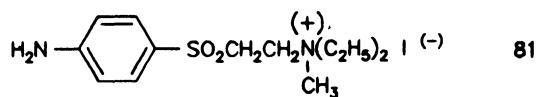
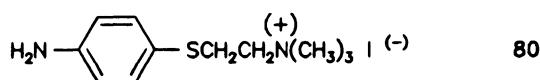
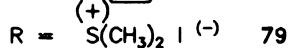
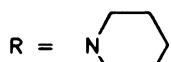
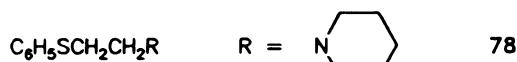
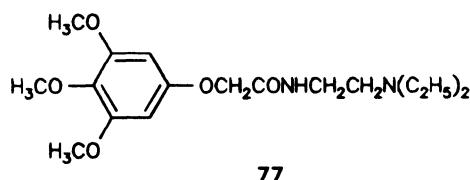

$R = N(C_2H_5)_3$ (+) 71

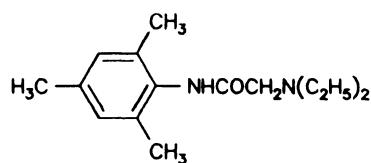
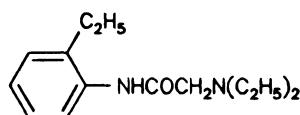
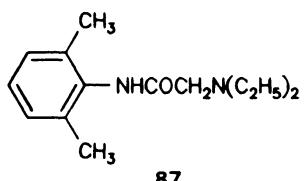
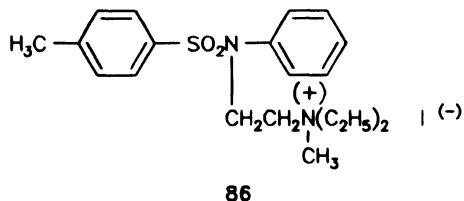
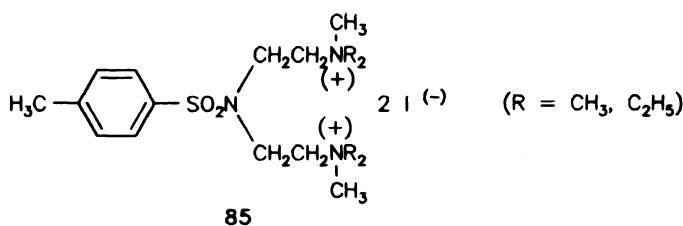
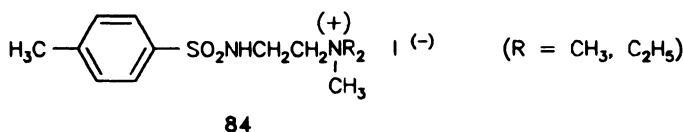
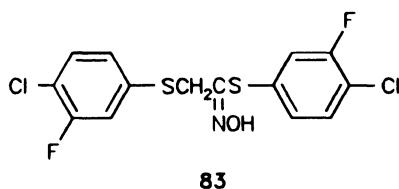
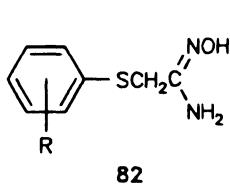
$R = N(C_2H_5)_3$ (-) 71

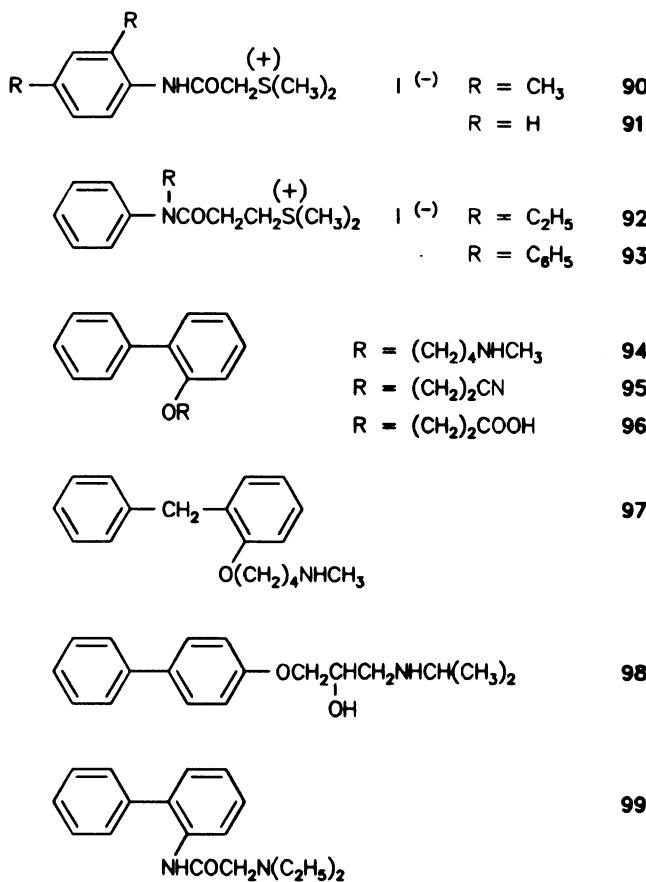


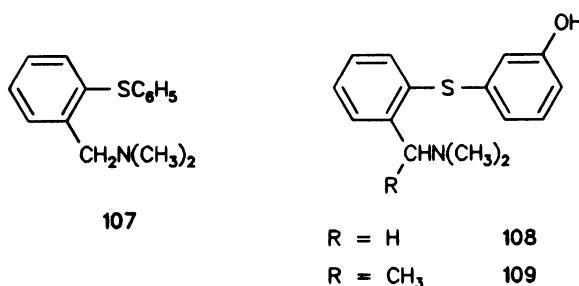
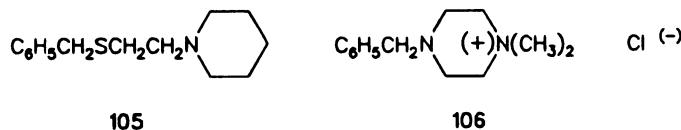
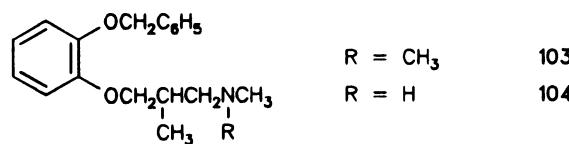
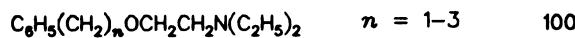
$R = CH_3$ 72

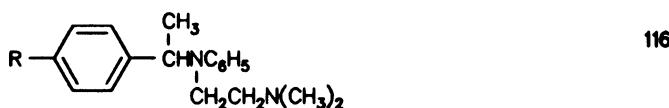
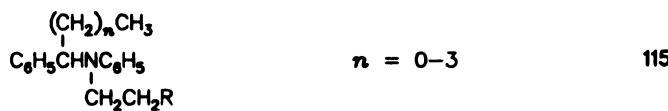
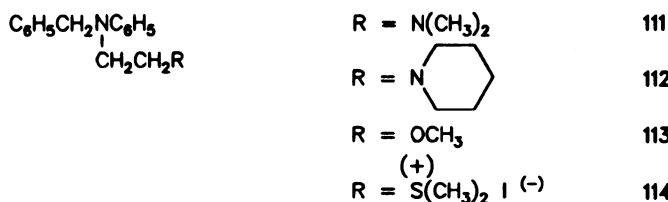
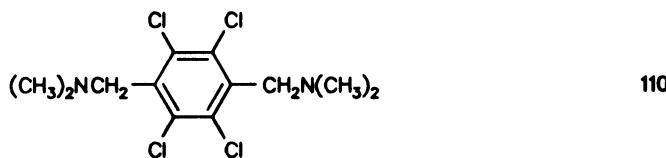

$R = H$ 73

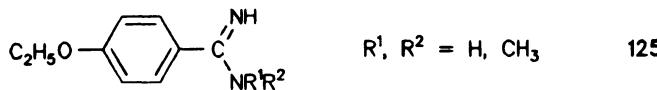
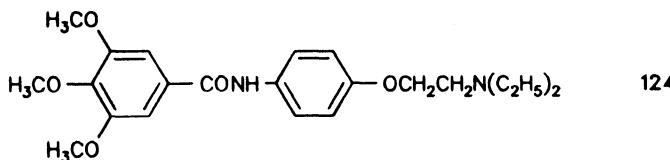
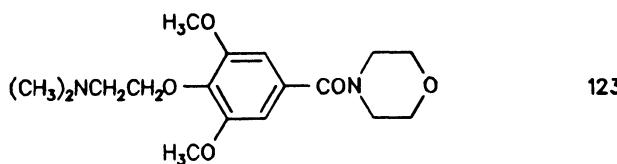
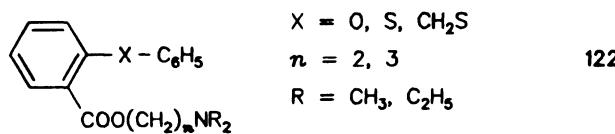
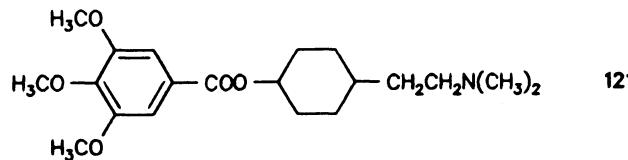
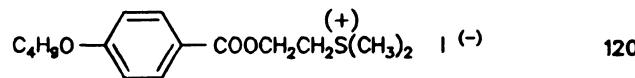
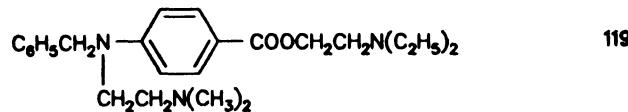
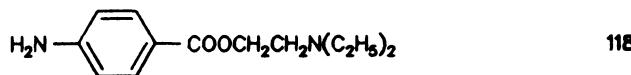
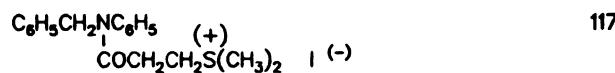






74

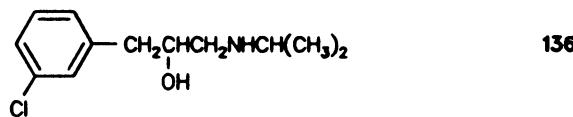
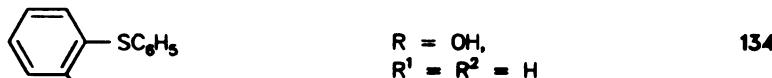
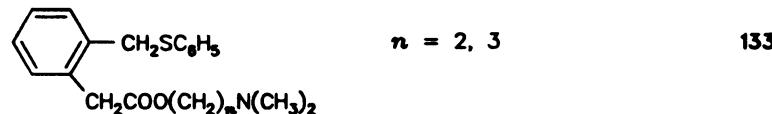









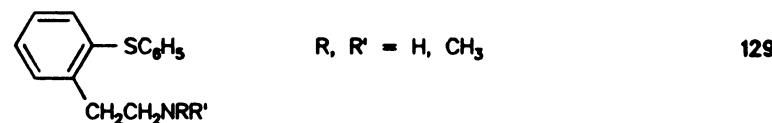
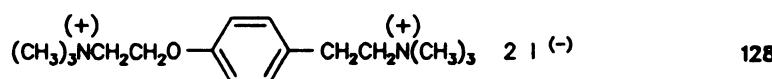
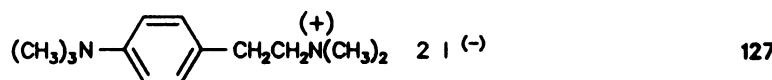

75

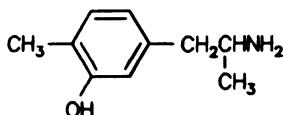





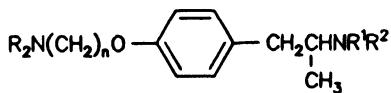




76

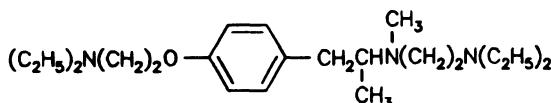










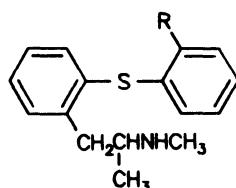




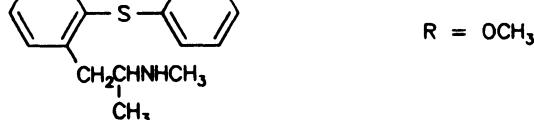




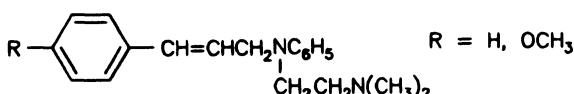



139

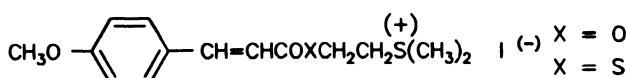
140



141


R = H

142


R = OCH3

143

R = H, OCH3

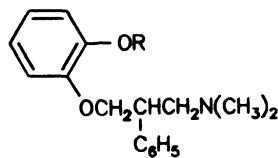
144

(+) CH=CHCOXCH2CH2S(CH3)2

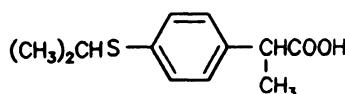
145

(-) X = O

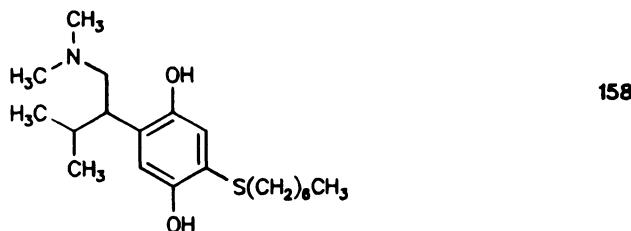
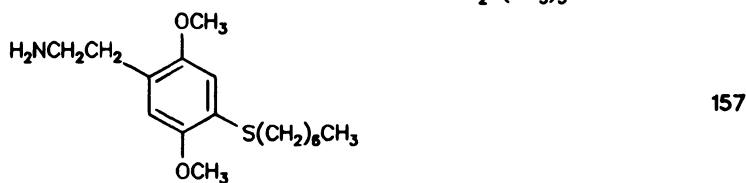
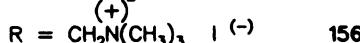
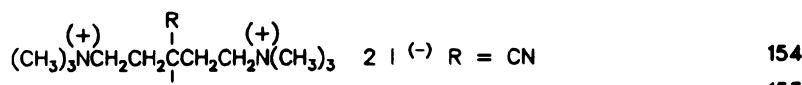
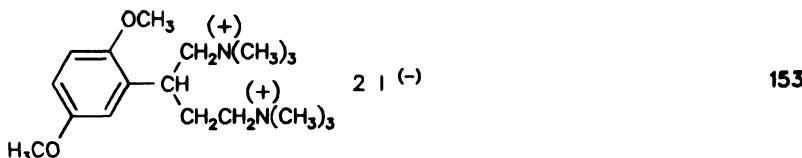
146

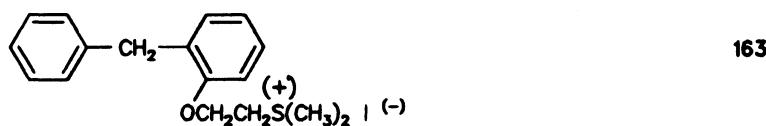
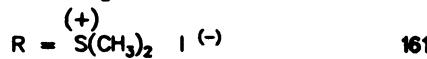
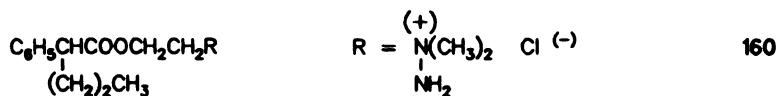


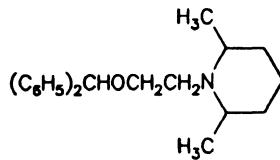
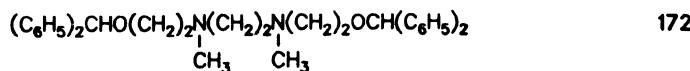
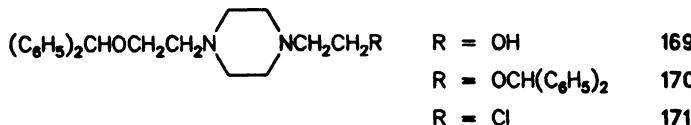
(+) CH=CHCOXCH2CH2S(CH3)2


147

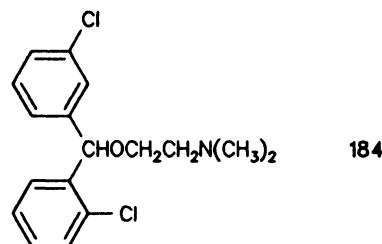
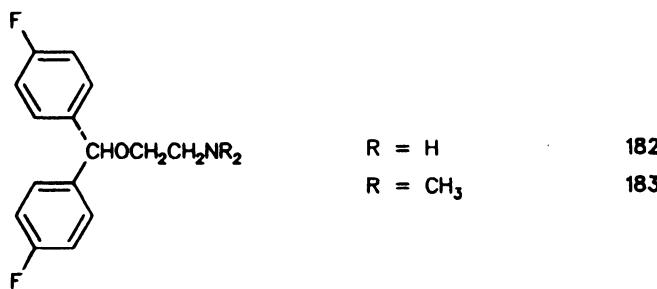
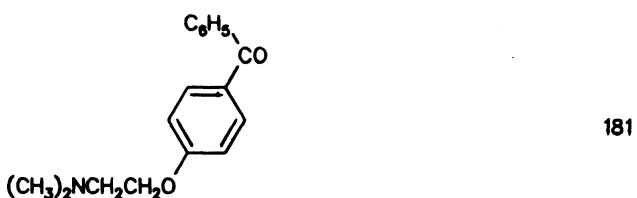
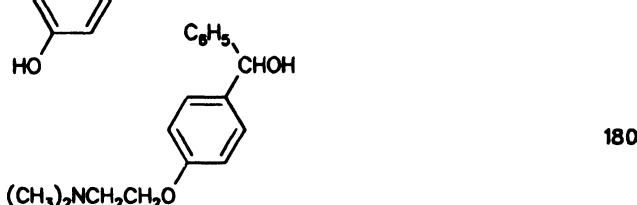
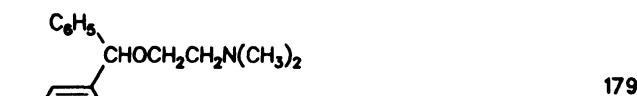
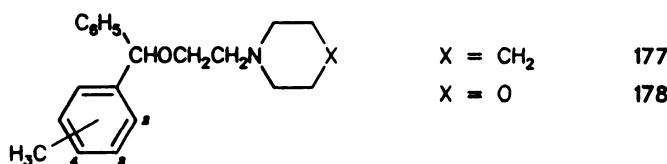
(-) X = S

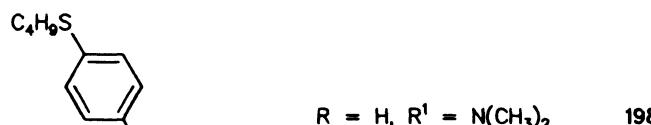
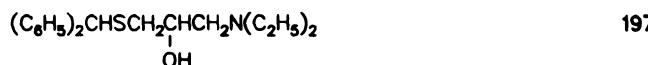
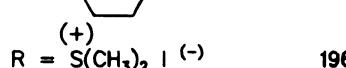
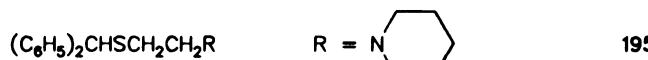
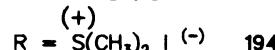
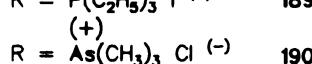
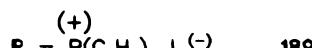
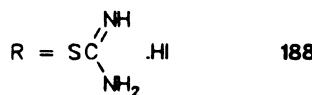
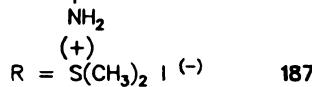
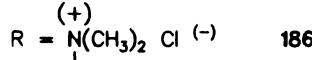





147

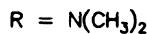
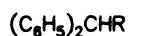




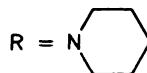




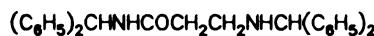
148

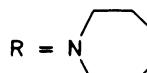
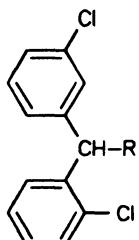






149

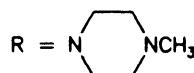
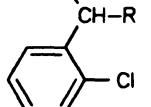











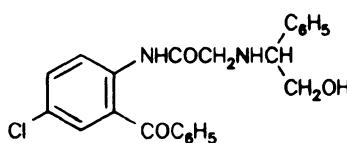



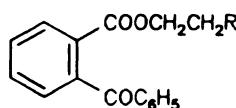

176

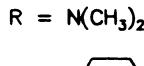
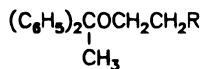

200

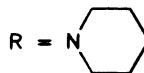


201

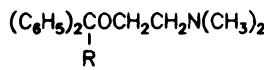


202

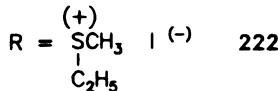
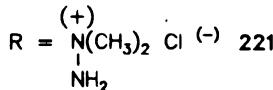
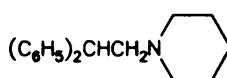
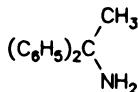
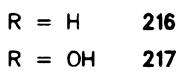
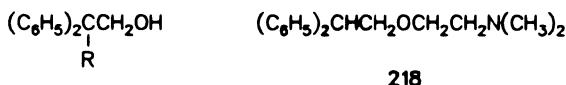
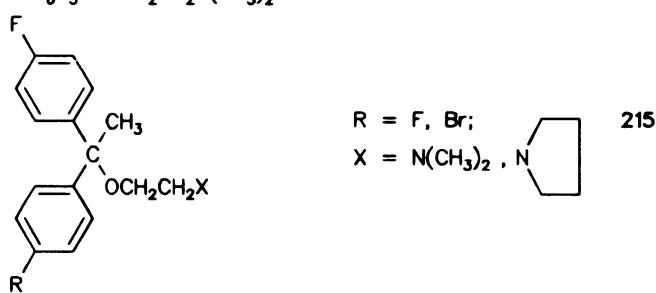
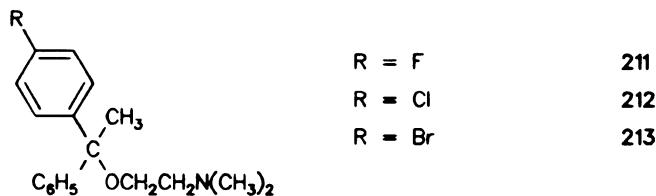

203

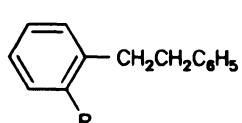

204

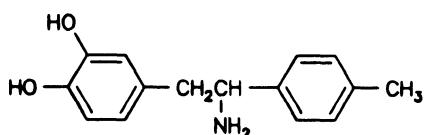


205


206


207









208

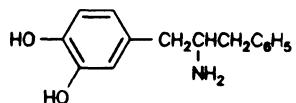

209

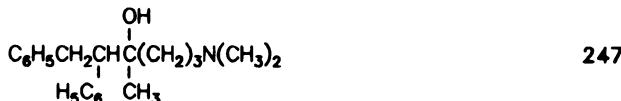
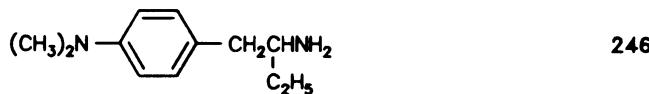
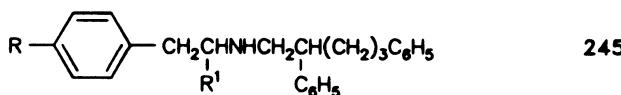
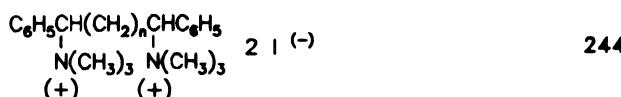
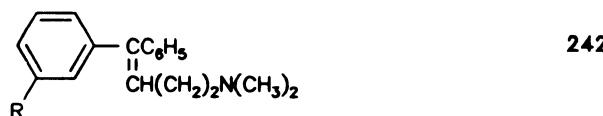
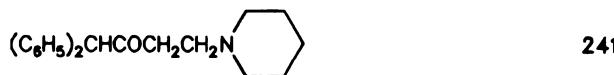

210

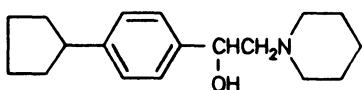
$(C_6H_5)_2CCOOC_2H_5CH_2N(C_2H_5)_2$	$R = OCH_2CH_2N(C_2H_5)_2$	223
R	$R = OH$	224
	$R = Cl$	225

	$R = COO(CH_2)_2N(CH_3)_2$	226
	$R = CO(CH_2)_3N(CH_3)_2$	227
	$R = CH=CH(CH_2)_2N(CH_3)_2$	228
	$R = N(CH_2)_3N(CH_3)_2$ $CH_2C_6H_5$	229

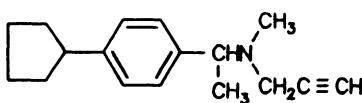
$C_6H_5CH_2CHC_6H_5$ $OCH_2CH_2N(CH_3)_2$	230
--	-----


	231
---	-----

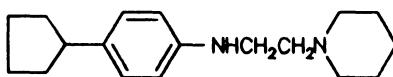






$(C_6H_5)_2CHCH_2CH_2R$	$R = OH$	232
	$R = OCH_2CH_2N(CH_3)_2$	233
	$R = S(CH_3)_2$ $(-)$	234
	$R = NHNH_2$	235

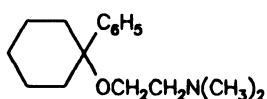

$(C_6H_5)_2CCH_2CH_2S(CH_3)_2$ $(-)$	236
--	-----

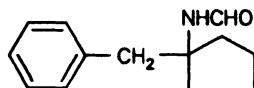
$(C_6H_5)_2CHCH_2C(NH_2)''$	237
-----------------------------	-----

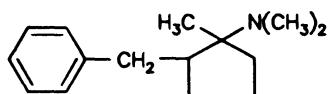

$(C_6H_5CH_2)_2CHR$	$R = OCH_2CH_2N(CH_3)_2$	238
	$R = NH_2$	239

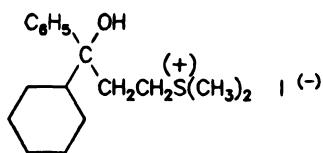
	240
---	-----

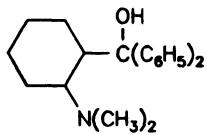


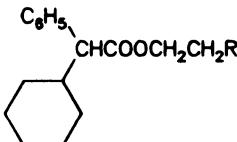
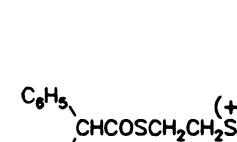
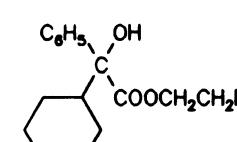
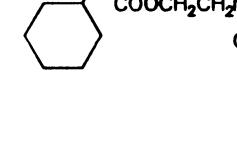
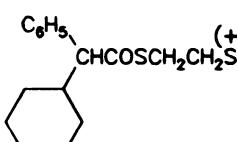
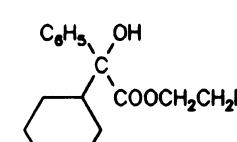
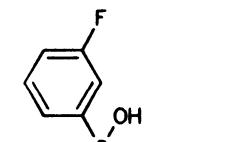
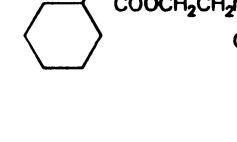

248

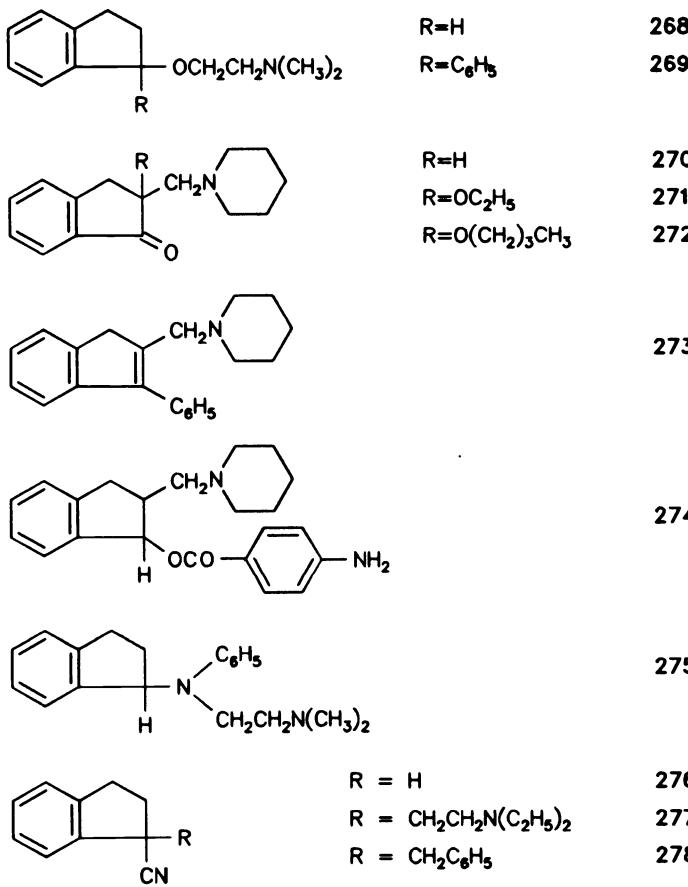

249

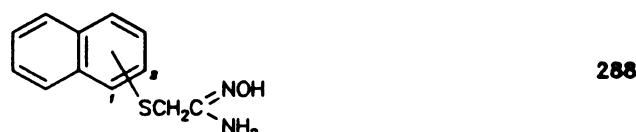
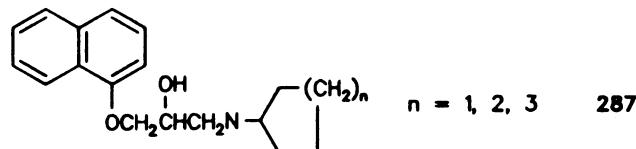
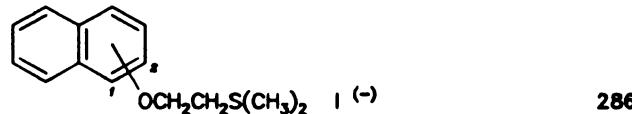
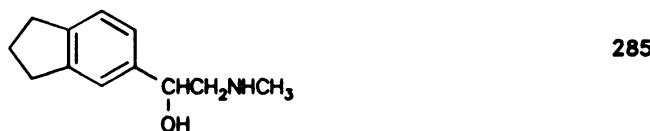
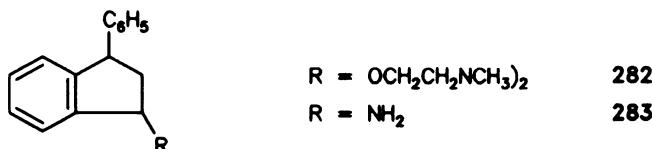
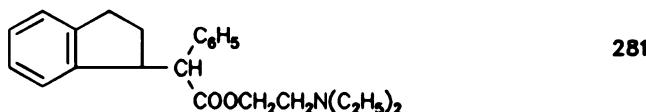
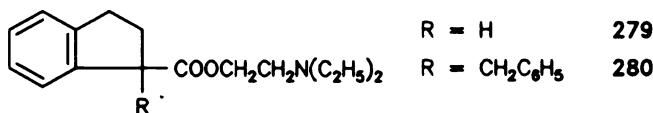

250

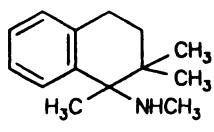
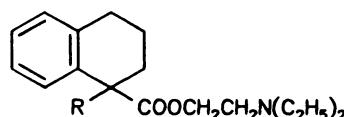
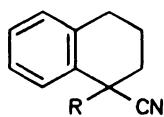
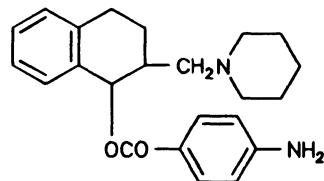
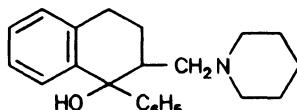
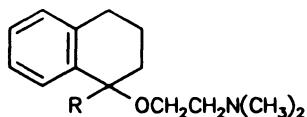
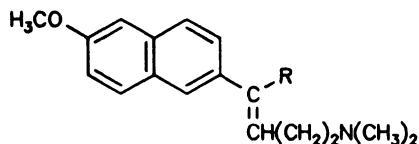
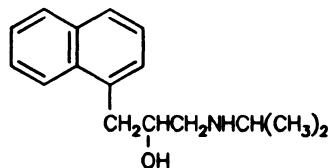

251

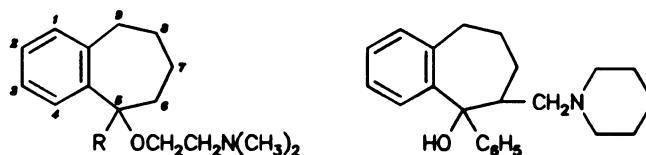

252









253

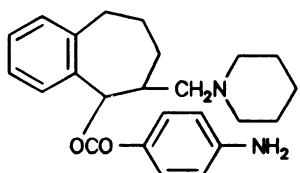


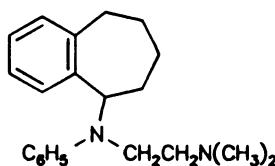







254


255

	$R = N(C_2H_5)_2$	256
	$(+)$	
	$R = N(CH_3)_3$ $(-)$	257
	$(+)$	
	$R = N(C_2H_5)_3$ $(-)$	258
	$(+)$	
	$R = N(CH_3)_2$ Cl $(-)$ NH ₂	259
	$(+)$	
	$R = S(CH_3)_2$ $(-)$	260
	$(+)$	
	$R = P(C_2H_5)_3$ $(-)$	261
	$(+)$	
	$R = \text{N}^+(\text{C}_6\text{H}_5)_2\text{C}_6\text{H}_4\text{Br}^-$ $(-)$	262
	$(+)$	
	$(+)$	
	$R = \text{S}^+(\text{CH}_3)_2\text{CH}_2\text{S}(\text{CH}_3)_2$ $(-)$	263
	$R = \text{S}^+(\text{CH}_3)_2$ $(-)$	264
	$(+)$	
	$R = \text{N}^+(\text{CH}_3)_2$ Br $(-)$	265
	$(+)$	
	$R = \text{N}^+(\text{C}_2\text{H}_5)_2$ Br $(-)$	266
	$(+)$	
	$R = \text{CH}_3$	267



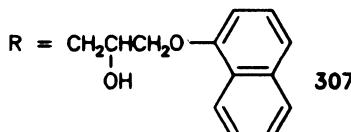

$R = H$ 299

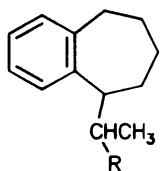
$R = C_6H_5$ 300

301

302

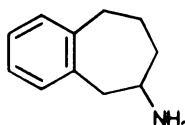
303


304

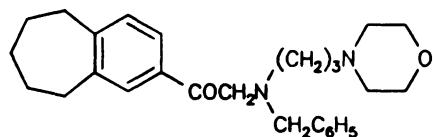

$R = C_2H_5$ 305

$R = CH_2CH_2CH(C_6H_5)_2$ 306

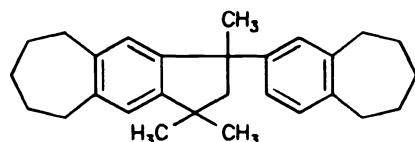
306

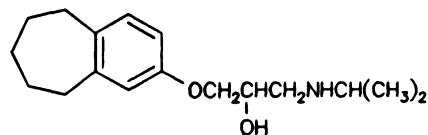


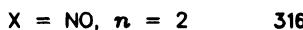
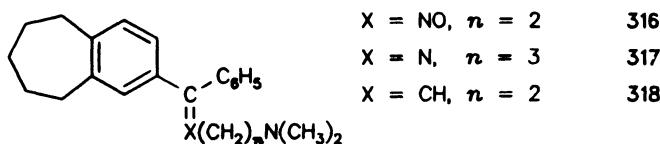
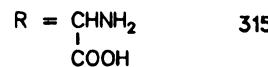
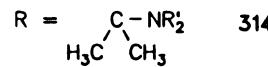
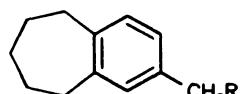
307

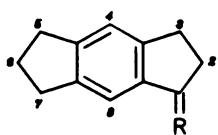


$R = COOH$ 308


$R = N(CH_3)_2$ 309

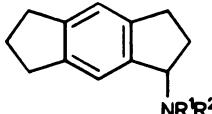

310







311

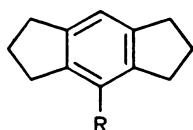


312

313



$R = O$


319

$R = NO(CH_2)_2N(CH_3)_2$

320

321

$R = COCH_3$

322

$R = NH_2$

323

$R = N$ $NCH_2CH_2C_6H_5$

324

$R = NHCOCH_2N$

325

$R = CHCH_2NHCH_3$
OH

326

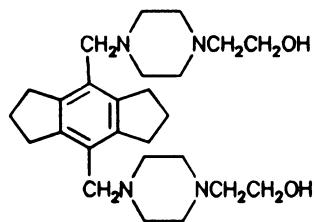
$R = CH_2Cl$

327

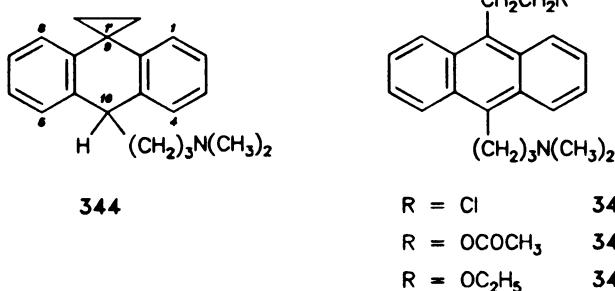
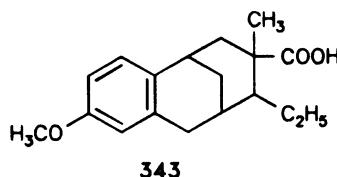
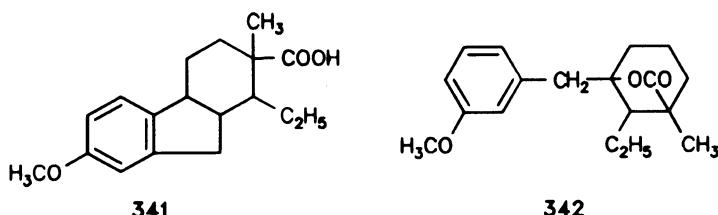
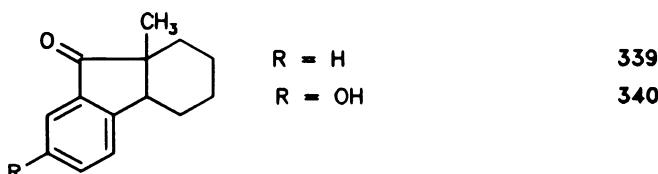
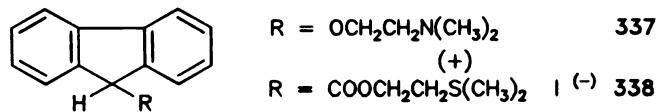
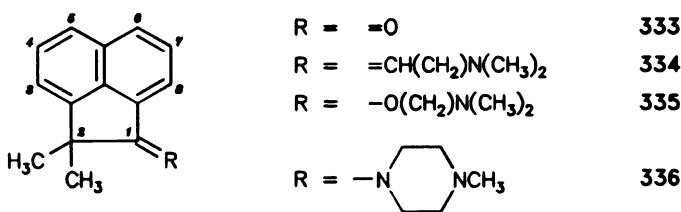
$R = CH_2$ $NCH_2C \equiv CH$
CH₃

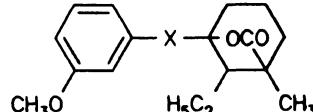
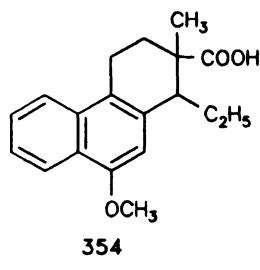
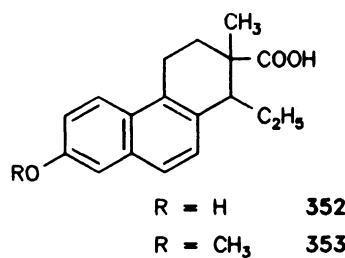
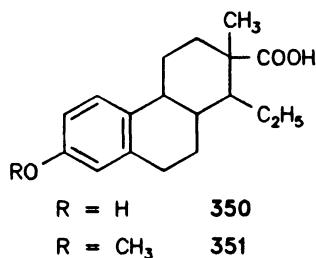
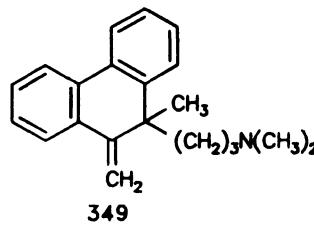
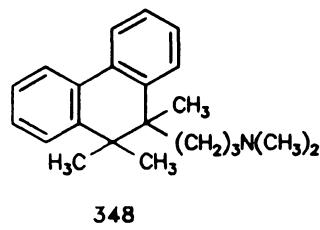
328

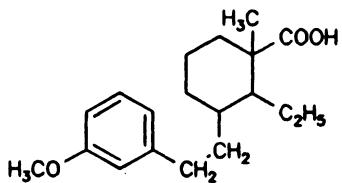
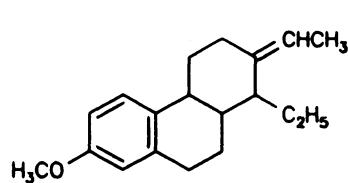
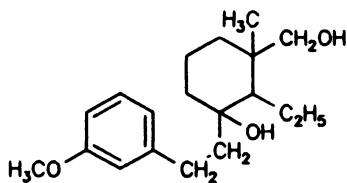
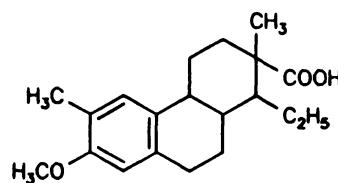
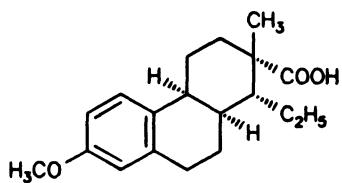
$R = CH_2$ NH₂
COOH

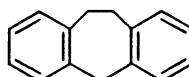
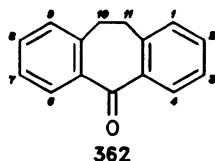

329

$R = CH_2$ CH₃
NR¹R²

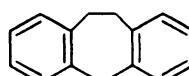






330







$R = (CH_2)_nN$ NCH₂CH₂OH






331

332

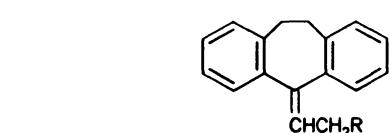


R = OH 363

R = $(+)$ $OCH_2CH_2N(CH_3)_3$ 364

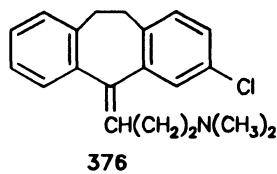
R = Cl 365

R = 366



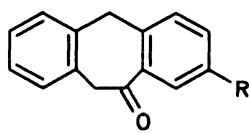
R = $(CH_2)_3N(CH_3)_2$ 370

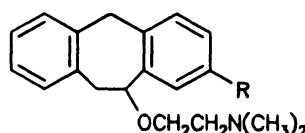
R = H 371


R = $(CH_2)_2N(CH_3)_2$ 372

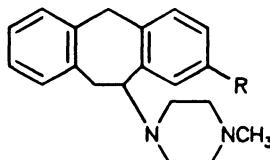
R = COOH 373

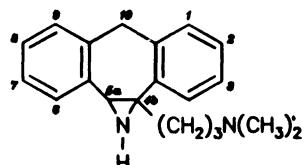
R = COOH 374

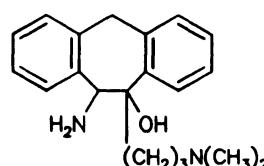

R = Br 375

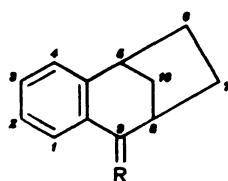

R = H 377

R = Cl 378

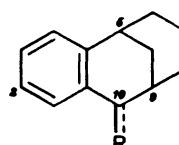



$R = H$ **380**
 $R = Cl$ **381**


$R = H$ **382**
 $R = Cl$ **383**

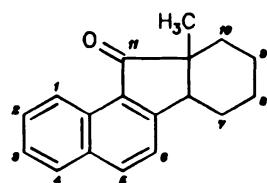

$R = H$ **384**
 $R = Cl$ **385**

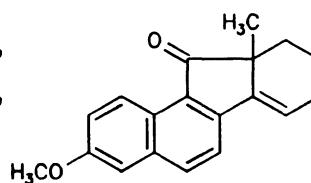
386



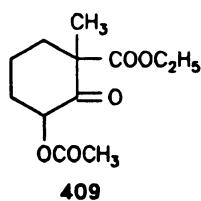
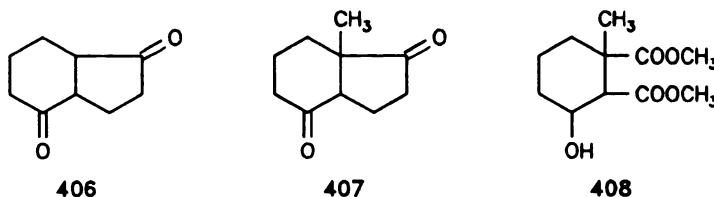
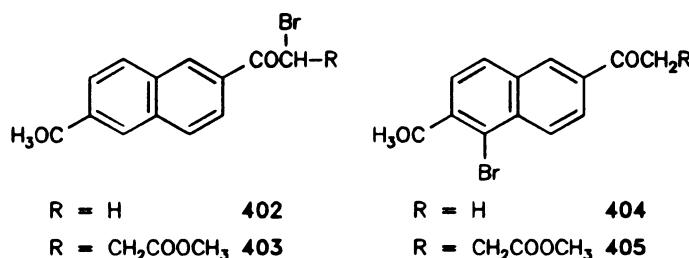
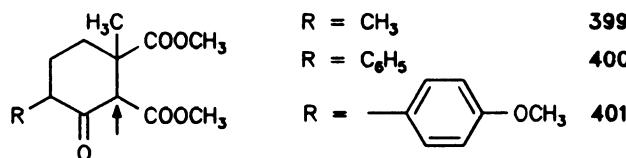
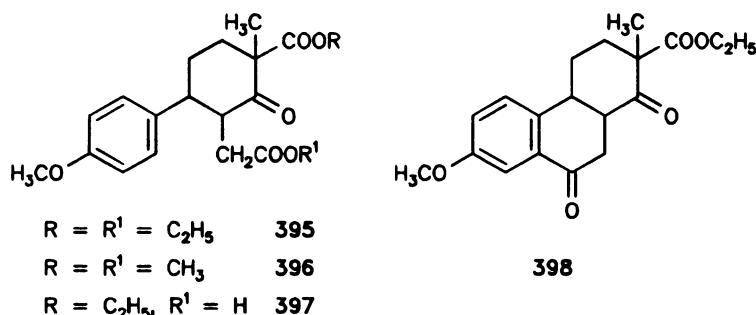
387

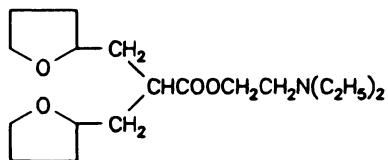
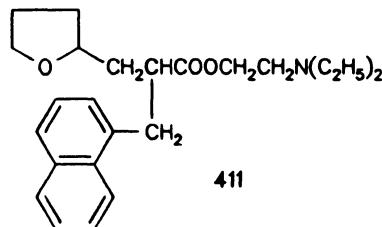
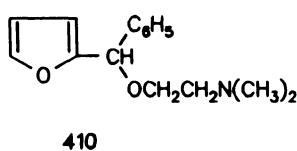
$R = O$ **388**


$R = CHCH_2CH_2N(CH_3)_2$ **389**

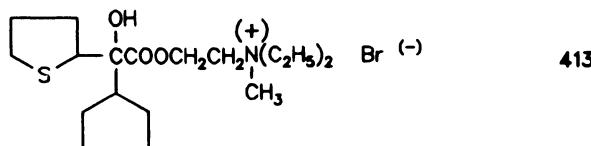

$R = O$ **390**

$R = OCH_2CH_2N(CH_3)_2$ **391**

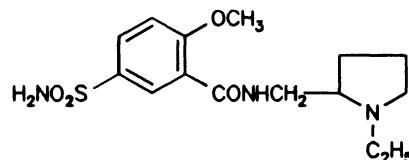
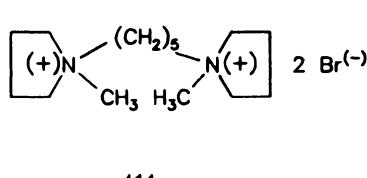





$R = CHCH_2CH_2N(CH_3)_2$ **392**

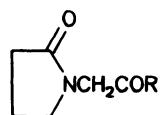
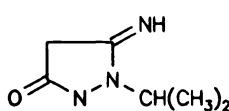
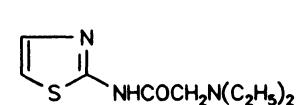




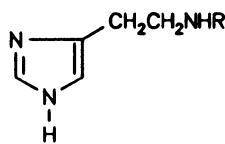
393



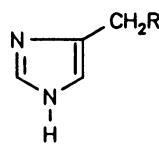
394

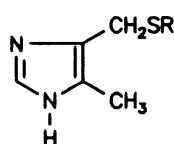



412

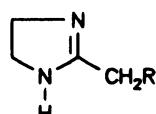


413

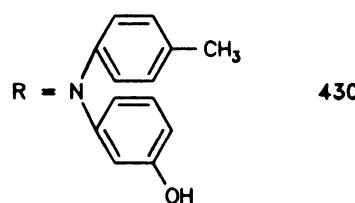


415

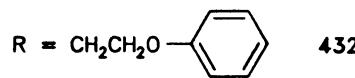

R = O(CH₂)₂N(CH₃)₃ | (-) 416R = NHCH₂COO(CH₂)₂N(CH₃)₃ | (-) 417R = NH- 418


$\text{R} = \text{H}$ 421
 $\text{R} = \text{CH}_2\text{C}_6\text{H}_5$ 422

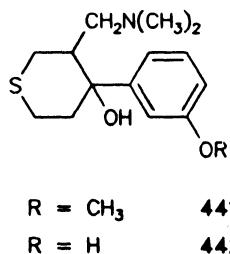
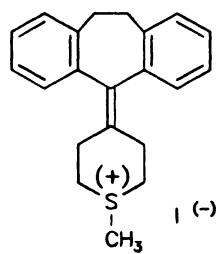
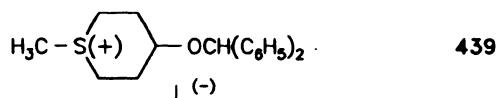
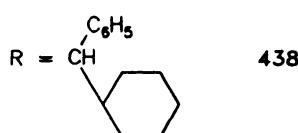
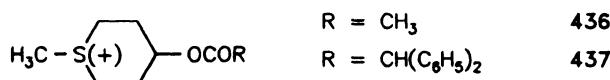
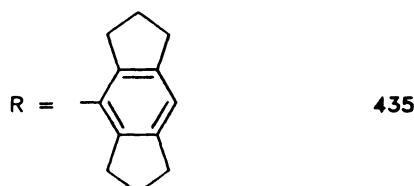
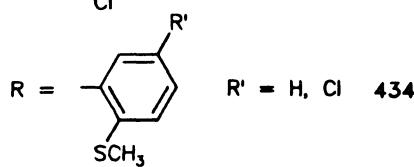
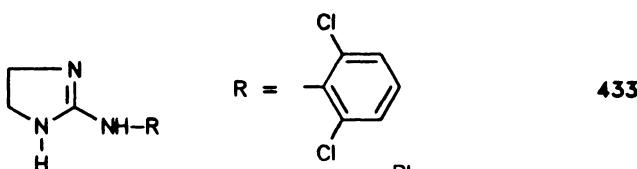
$\text{R} = \text{SCH}_3$ 423
 $\text{R} = \text{--} \begin{array}{c} \text{N} \\ \parallel \\ \text{N} \end{array} \text{--}$ 424

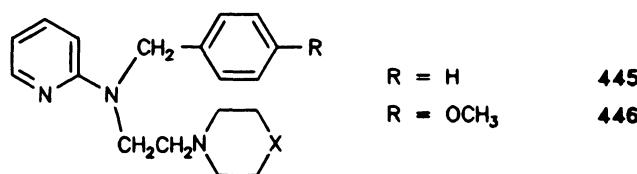
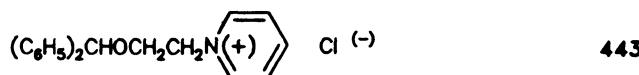

$\text{R} = -\text{CH}_2-\text{C}_6\text{H}_4-\text{OCH}_2\text{CH}_2\text{N}(\text{CH}_3)_2$ 425
 $\text{R} = (\text{CH}_2)_3\text{C}_6\text{H}_5$ 426

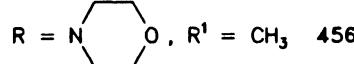
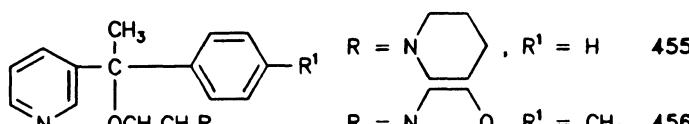
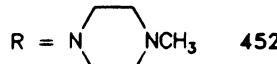
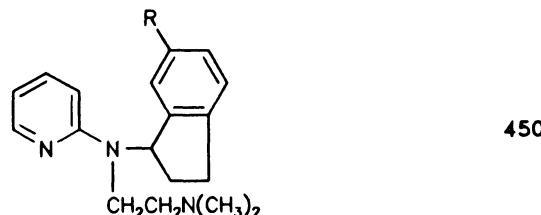
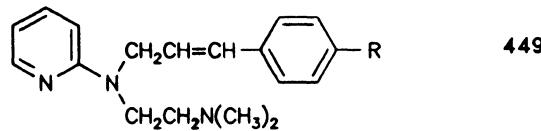
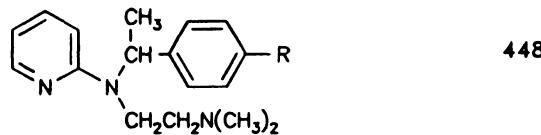
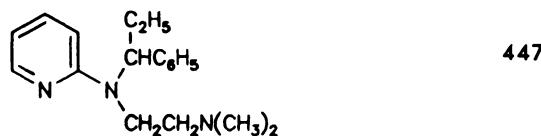
$\text{R} = \text{CH}_2\text{NH}_2$ 427

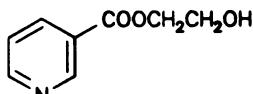

$\text{R} = \text{OCH}(\text{C}_6\text{H}_5)_2$ 428

$\text{R} = \text{N} \begin{array}{c} \text{C}_6\text{H}_5 \\ \diagup \\ \text{CH}_2\text{C}_6\text{H}_5 \end{array}$ 429

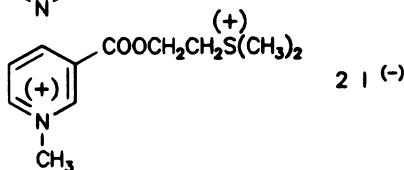











$\text{R} = -\text{C}_6\text{H}_4-\text{CH}_3$ 430

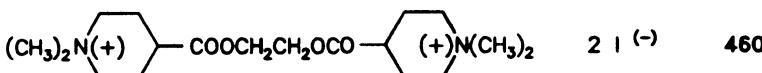







$\text{R} = -\text{C}_6\text{H}_4-\text{OH}$ 431



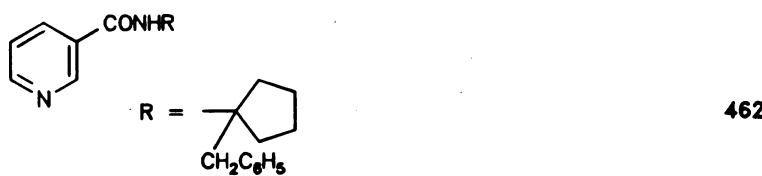
$\text{R} = \text{CH}_2\text{CH}_2\text{O}-\text{C}_6\text{H}_4-\text{SC}_6\text{H}_5$ 432

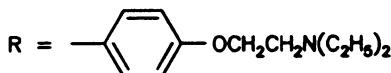


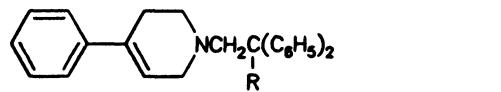
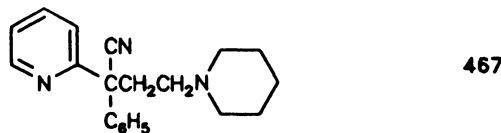
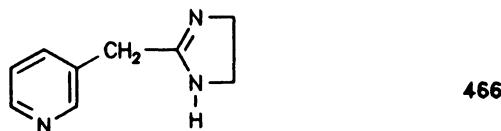
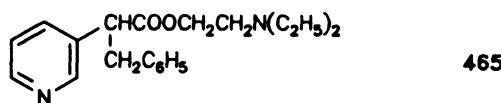
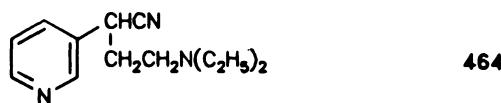


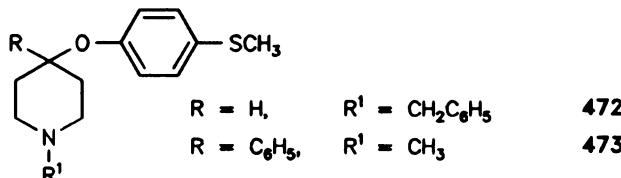
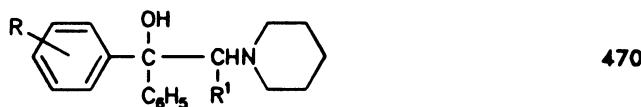

457

458

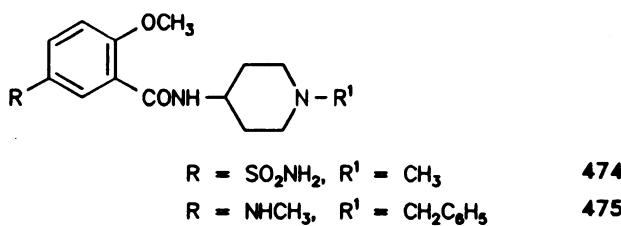

459


460

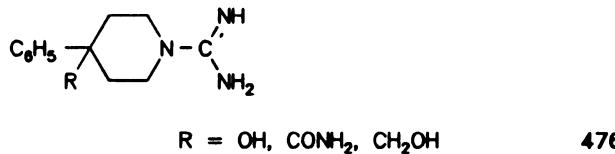





461



462

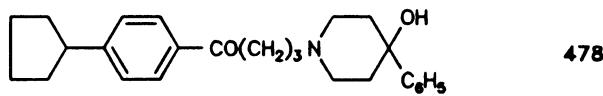
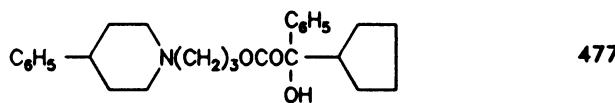
463

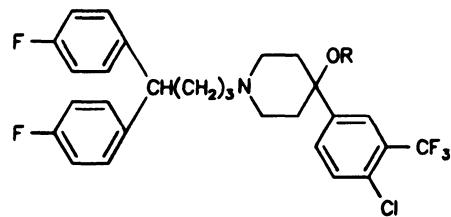


$R = H$ 468
 $R = OH$ 469

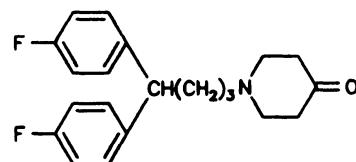

$R = H, R^1 = CH_2C_6H_5$

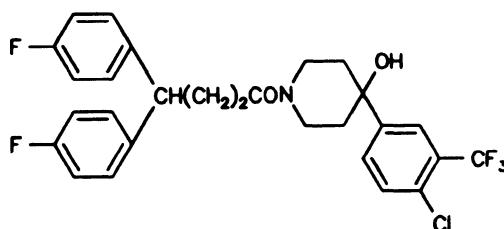
$R = C_6H_5, R^1 = CH_3$

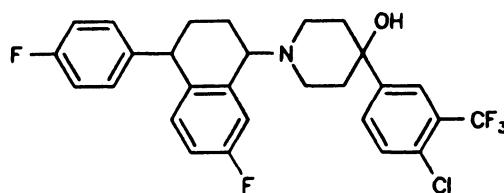

$R = SO_2NH_2, R^1 = CH_3$

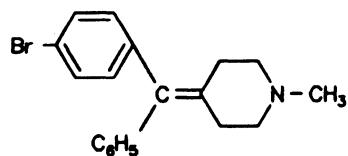
$R = NHCH_3, R^1 = CH_2C_6H_5$

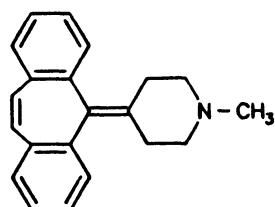

$R = OH, CONH_2, CH_2OH$

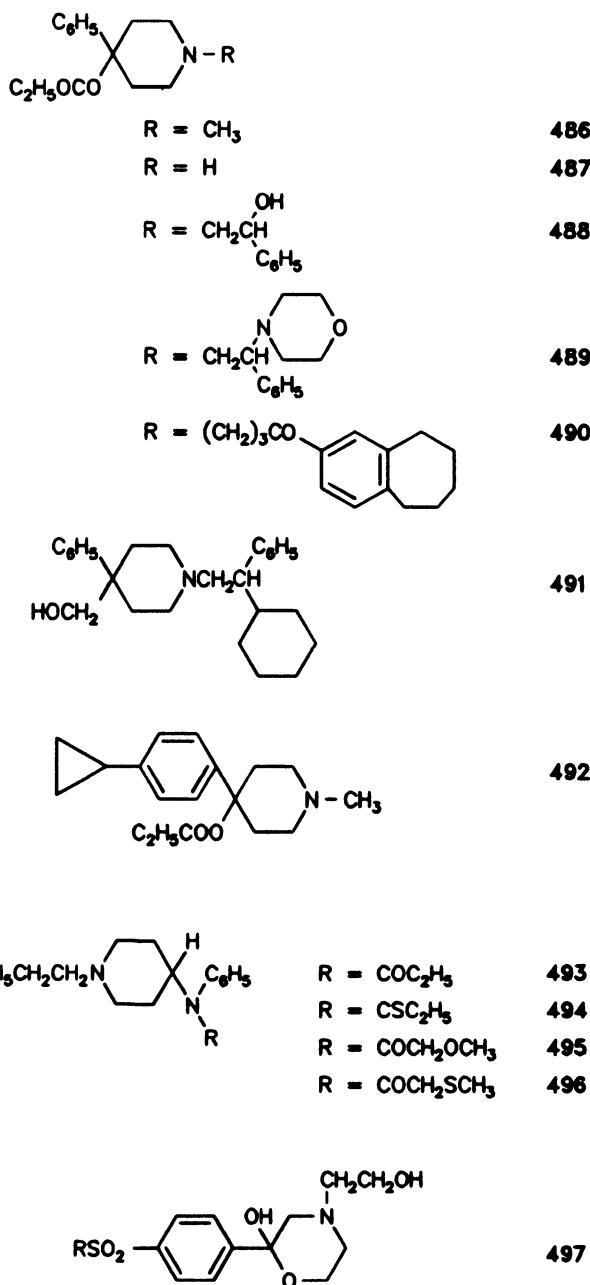


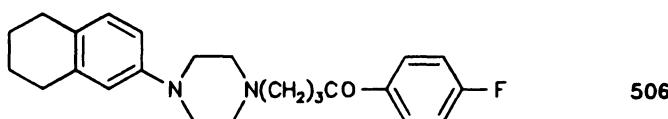
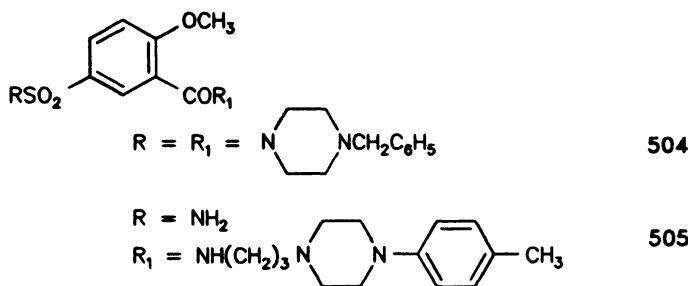
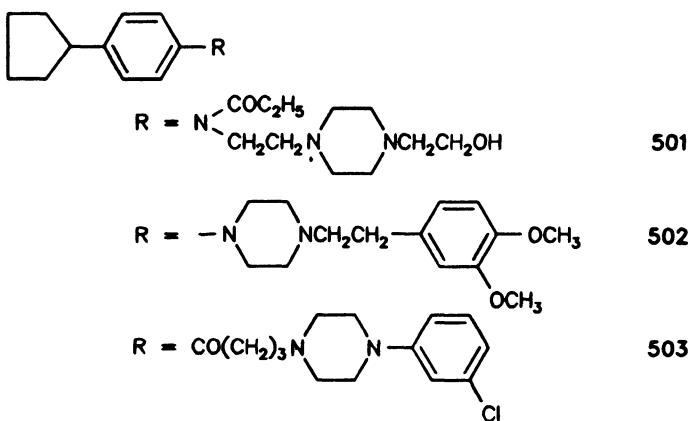
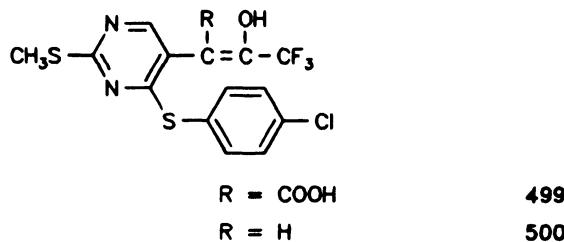
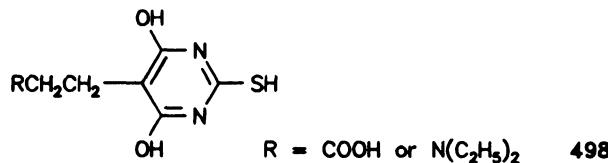
R = H 479


R = CO(CH2)6CH3 480

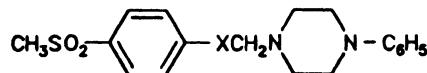

481


482

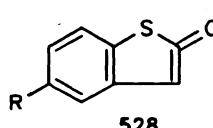
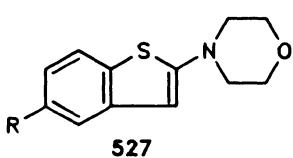
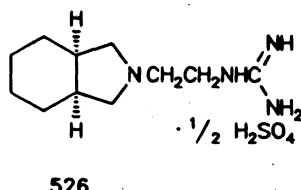
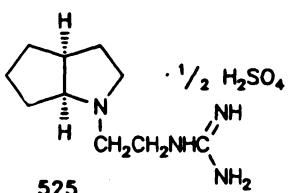
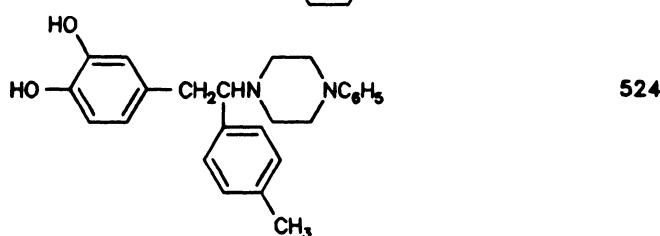
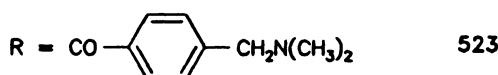
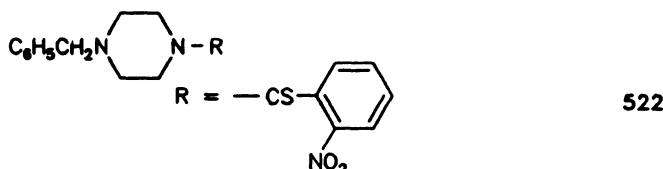
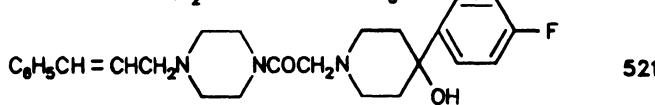
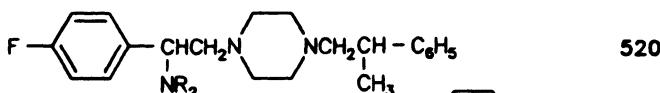

483

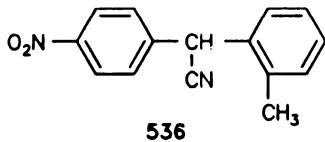
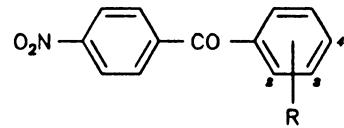
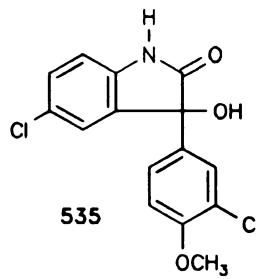
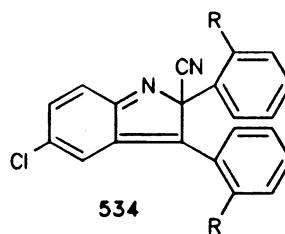
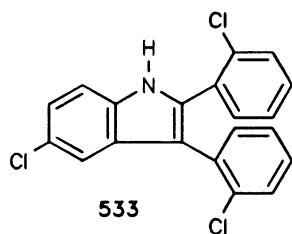
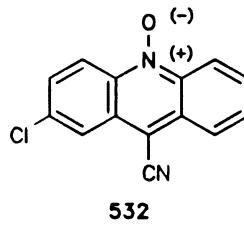
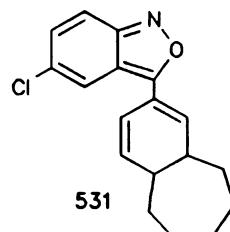






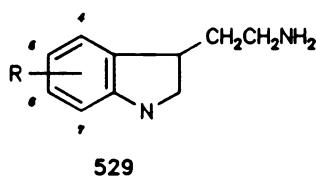
484

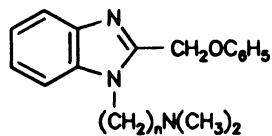


485

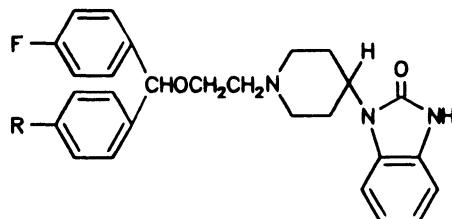










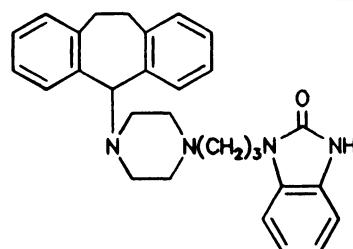








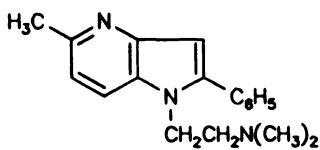

X = -	Y = (CH ₂) ₃	507
X = -CHCH ₂ -	Y = CH ₂	508
 OH		
X = CH ₂	Y = -	509
 		510
 	R = CH ₃	511
	R = CH ₂ CH ₂ OCH ₃	512
 		513
 	R = R ¹ = H	514
	R = Cl, R ¹ = CH ₃	515
 		516
 		517

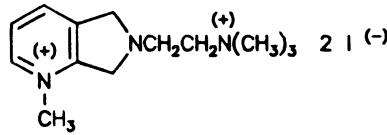


X = CO 518


X = CHO 519

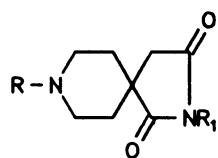



537a


538

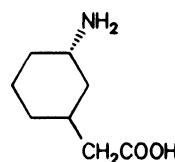
539


540

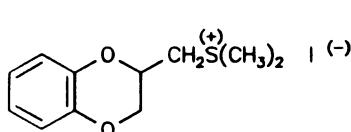

541

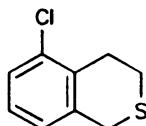
542

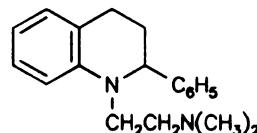
543

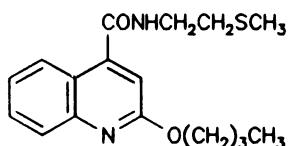


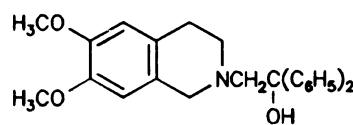
$R = \text{CH}_3, \quad R^1 = \text{C}_2\text{H}_5 \quad 544$

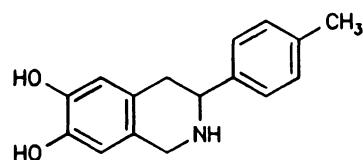
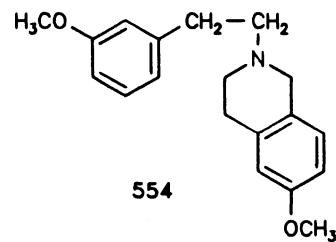
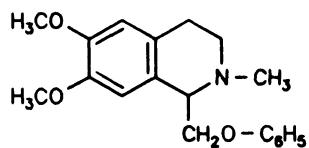

$R = \text{CH}_2\text{CH}_2\text{Cl}, \quad R^1 = \text{CH}(\text{CH}_3)_2 \quad 545$

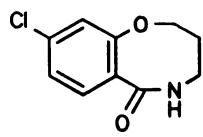
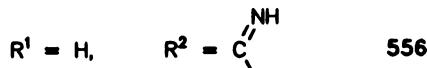
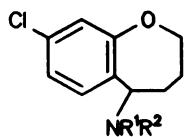

546


547

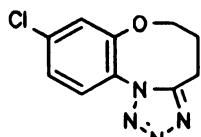

548


549

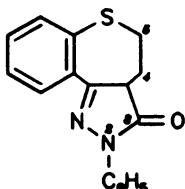



550

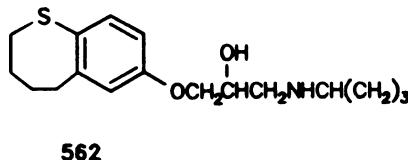




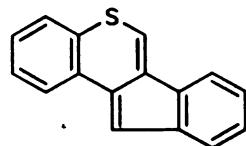
551

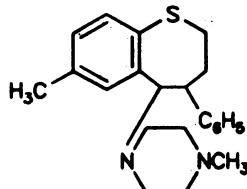


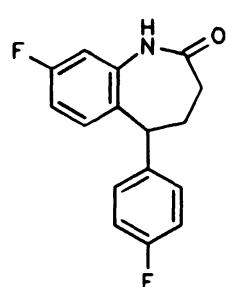
552

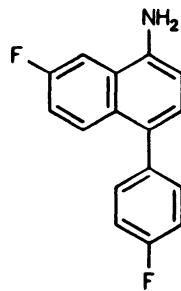

558


559

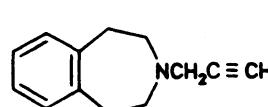

560

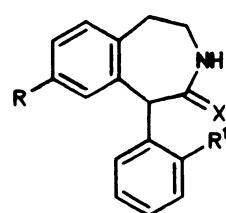

561

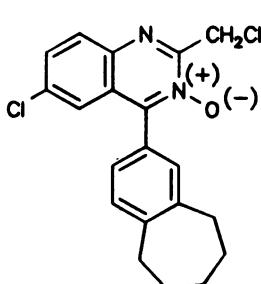

562

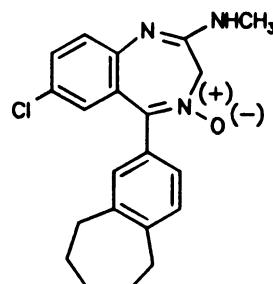

563

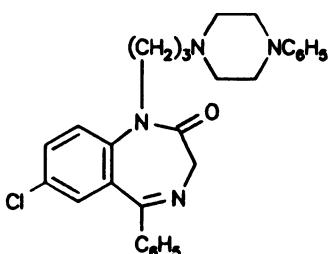

564

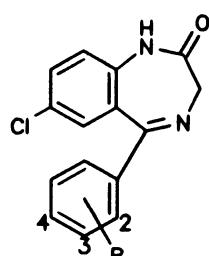

565

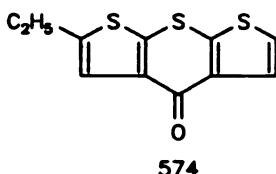

566

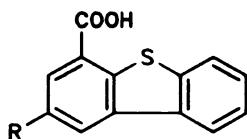

567


568


569


570

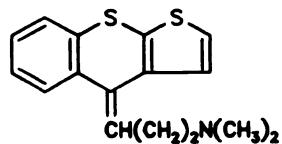

571


572

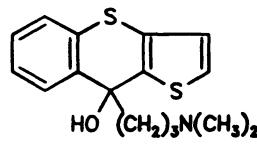
573

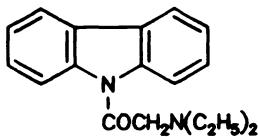


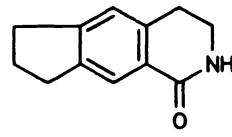
574

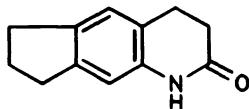


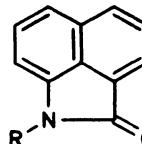
R = H 575


R = Cl 576

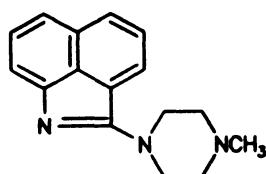

577


578

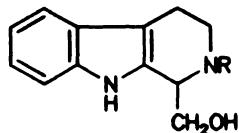

579


580

581

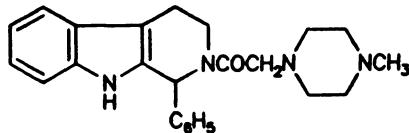


582

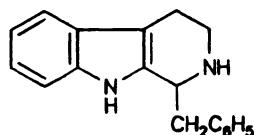


R = H 583

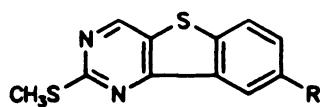
R = (CH2)3N(CH3)2 584

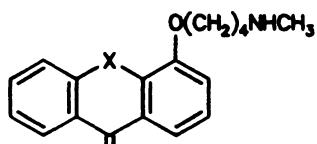


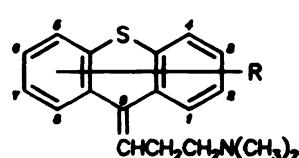
585



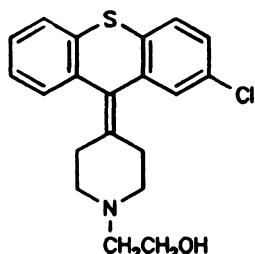
R = H 586

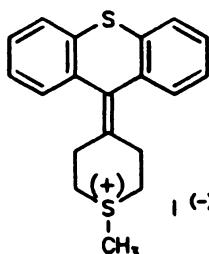

R = C2H5 587

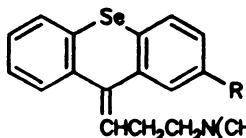

588


589

590

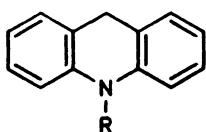

591


593


592

594

595



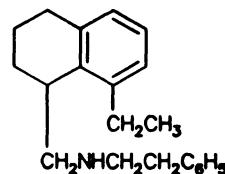
R = H

596

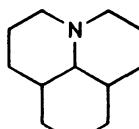
R = Cl

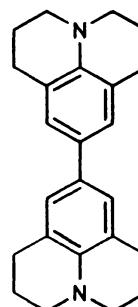
597

R = $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_3)_2$

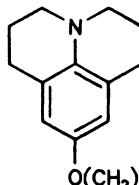

598

R = $\text{COCH}_2\text{N}(\text{C}_2\text{H}_5)_2$

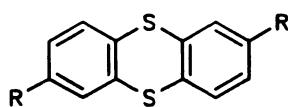

599


R = H 600

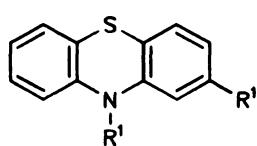
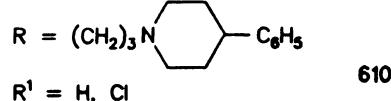
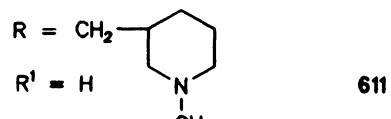
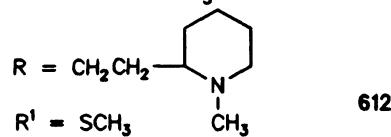
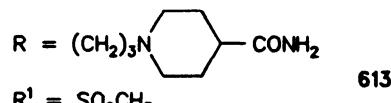
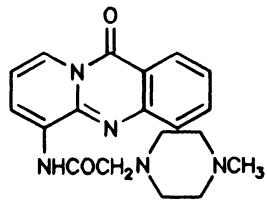
R = $\text{CH}_2\text{C}\equiv\text{CH}$ 601



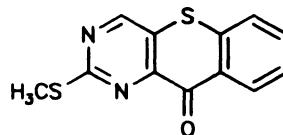
602



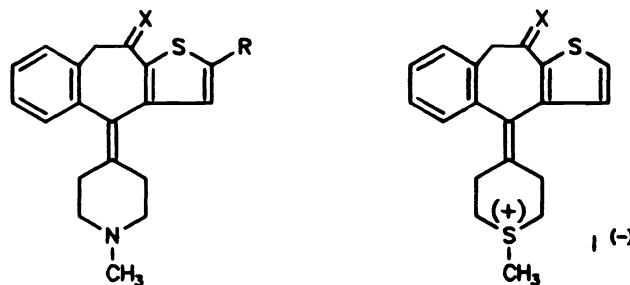
603







604

605 $n = 2, 3$ 606 $n = 1, 2$



R = H 607

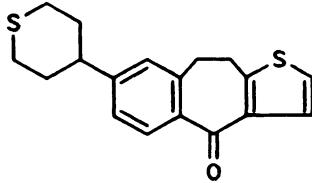

R = Cl 608

R = $\text{COCH}_2\text{CH}_2\text{S}(\text{CH}_3)_2$ (+) | (-) 609
R' = HR = $(\text{CH}_2)_3\text{N}$ 610
R' = H, ClR = CH_2 611
R' = HR = CH_2CH_2 612
R' = SCH_3 R = $(\text{CH}_2)_3\text{N}$ 613
R' = SO_2CH_3

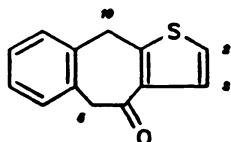
614

615

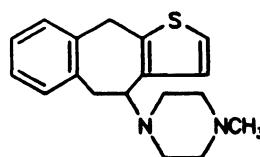
X = H₂, R = H 616

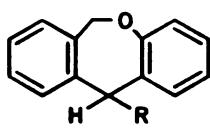

X = O, R = H 617

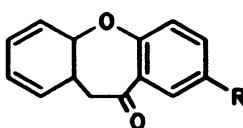
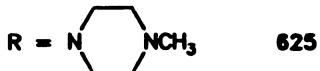
X = O, R = Br 618

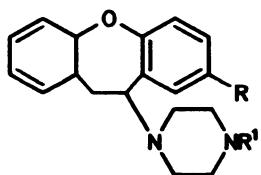

X = H₂ 619

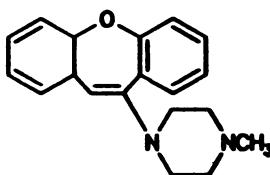
X = O 620

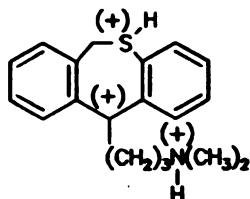
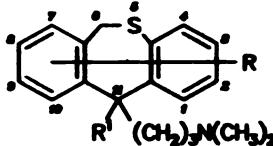
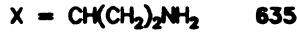
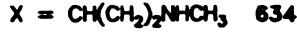
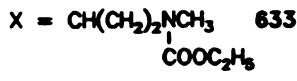

I (–)

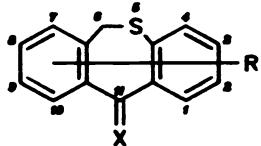

621

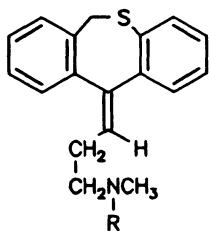


622


623

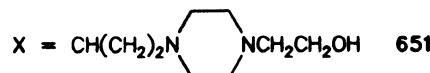
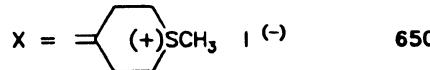
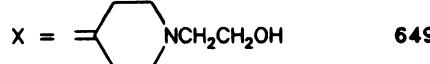
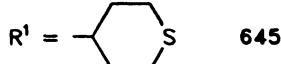
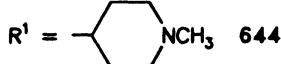
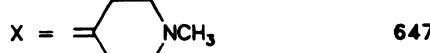
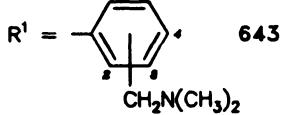
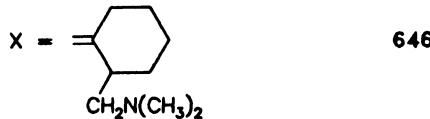
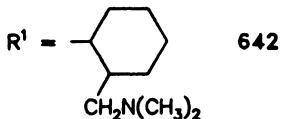
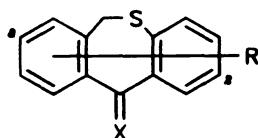
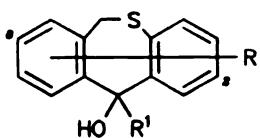

$R = \text{OCH}_2\text{CH}_2\text{N}(\text{CH}_3)_2$ 624

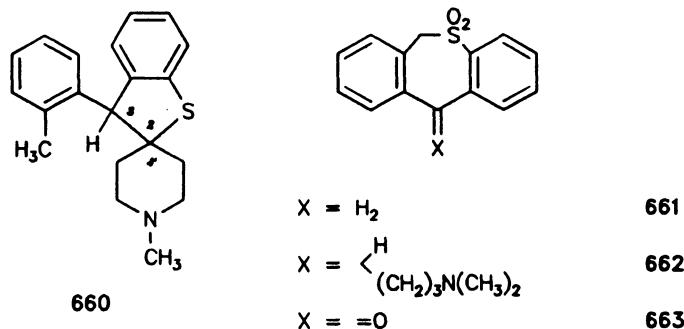
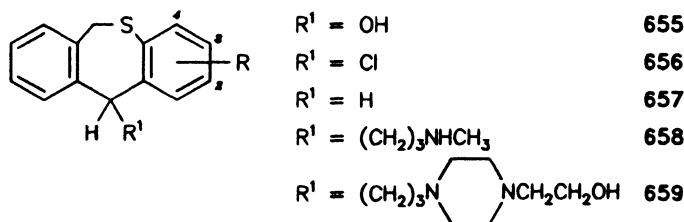
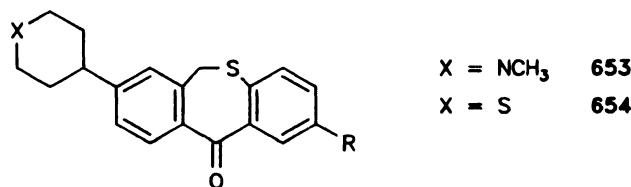
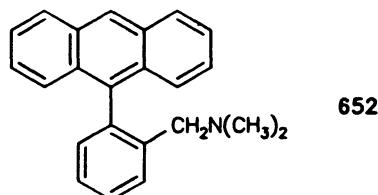






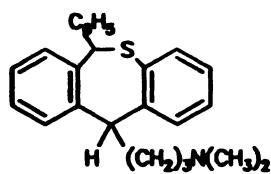

626


$R^1 = \text{CH}_3$ 627

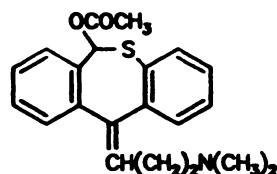
630

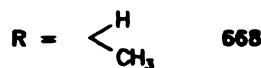
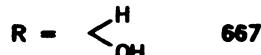
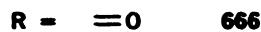
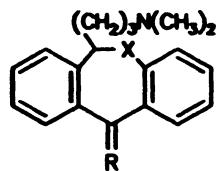











638

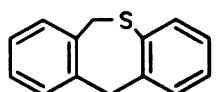
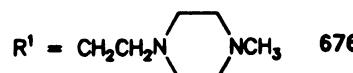
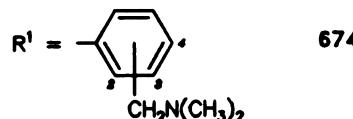
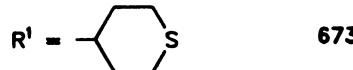
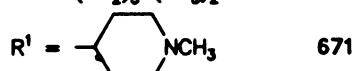






R = $(CH_2)_3OCO(CH_2)_8CH_3$ 639

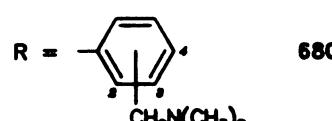
R = $CH_2CO-C_6H_4-Cl$ 640

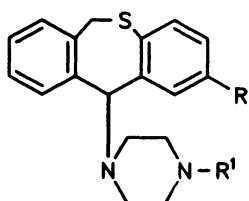

R = $COCH_2N-Cyclohexyl-NCH_3$ 641


664




665

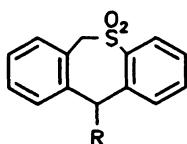
677

$R^1 = \text{CH}_3$ 681

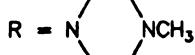
$R^1 = \text{CH}_2\text{CH}_2\text{OH}$ 682

$R^1 = \text{CH}_2\text{CH}_2\text{OCH}_3$ 683

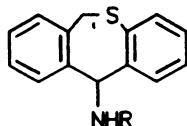
$R^1 = \text{H}$ 684


$R^1 = (\text{CH}_2)_3\text{N}^+(\text{CH}_3)_2$ 685

$R^1 = (\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 686


$R^1 = -\text{C}_6\text{H}_3(\text{CH}_2\text{N}(\text{CH}_3)_2)_2$ 687

$R^1 = -\text{C}_6\text{H}_4-\text{O}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 688



R = Br

689

690

R = H

691

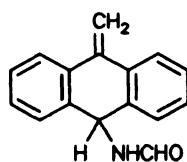
R = COOC₂H₅

692

R = CONHCH₂CH₂OH

693

R = CONHCH₂C₆H₅

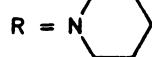

694

R = COCH₂N(CH₃)₂

695

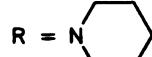
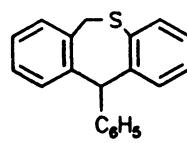
R = CH₂COOH

696



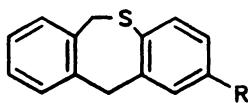
697

698

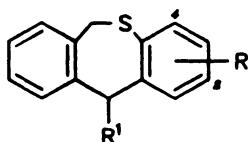


R = Cl

699

R = (CH₂)₃N(CH₃)₂


700

701


R = (CH₂)₃N(CH₃)₂

702

R = COCH₃ 703

R = CH₂COOH 704

R' = CHO 705

R' = CH₂OH 706

R' = CN 707

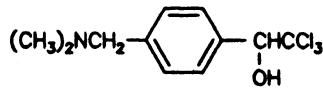
R' = COOH 708

R' = CONH₂ 709

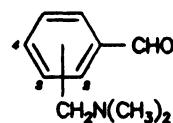
R' = CH₂COOH 710

R' = CH₂NH₂ 711

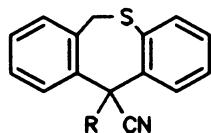
R' = CH₂NHCH₃ 712


R' = CH₂N(CH₃)₂ 713

R' = CH₂NHCOCH₂N(CH₃)₂ 714

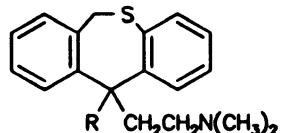

R' = 715

R' = CH₂N(CH₃)₂ 716


R' = CO CH₂N(CH₃)₂ 717

718

719



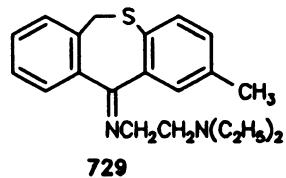
R = $(\text{CH}_2)_n\text{N}(\text{CH}_3)_2$ 720

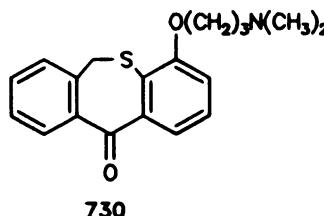
R = $(\text{CH}_2)_n\text{Br}$ 721


R = $(\text{CH}_2)_n\text{N}(\text{C}_6\text{H}_5)\text{C}_6\text{H}_5$ 722

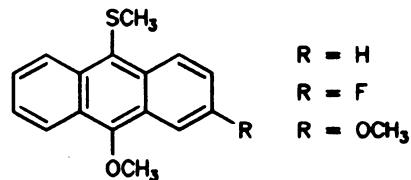
R = $\text{CH}=\text{CH}_2$ 723

R = COOH 724

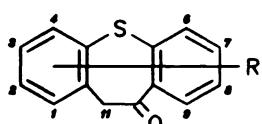

R = H 725

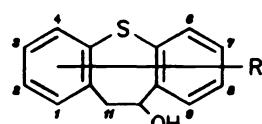

R' = Br 726

R' = CN 727

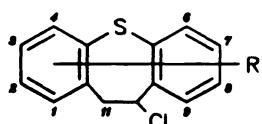

R' = COOH 728

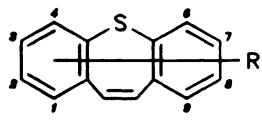
729


730

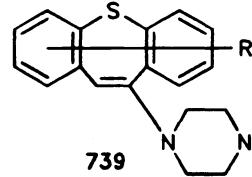

R = H 731

R = F 732


R = OCH_3 733

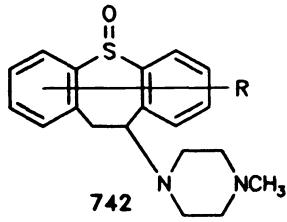
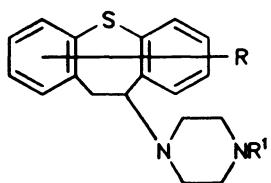

734

735

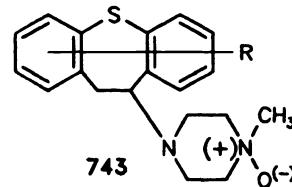

736

738

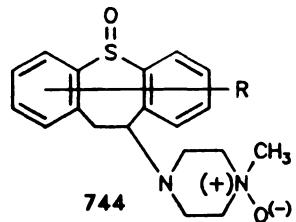
737

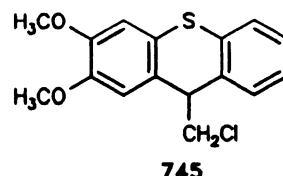


739

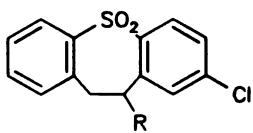
 $R^1 = COOC_2H_5$

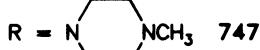

740

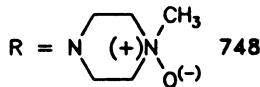
 $R^1 = H$

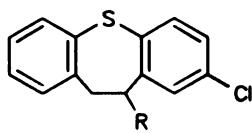

741


742

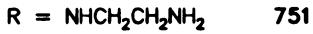

743

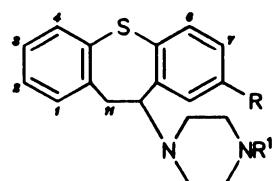

744


745

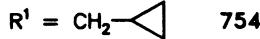

R = Cl 746

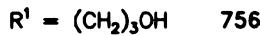
R = N(CH₃) 747


R = N+(CH₃)O(-) 748


R = N(OH) 749

R = NOCOC₆H₅ 750

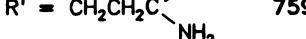

R = NHCH₂CH₂NH₂ 751

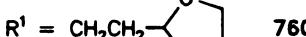

R¹ = alkyl etc. 752

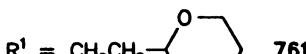
R¹ = 753

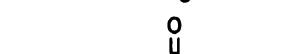
R¹ = CH₂ 754

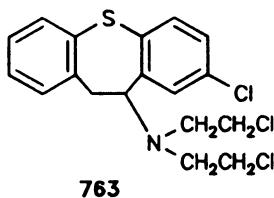
R¹ = CH₂CH₂OH 755

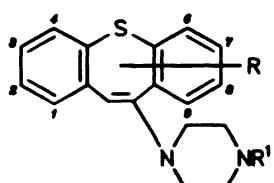

R¹ = (CH₂)₃OH 756


R¹ = (C_nH_{2n})OH 757

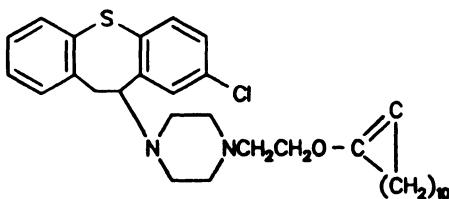

R¹ = CH₂CH₂CONH₂ 758


R¹ = CH₂CH₂C(=NOH)NH₂ 759

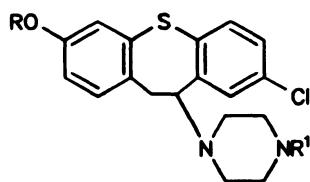

R¹ = CH₂CH₂— 760


R¹ = CH₂CH₂— 761

R¹ = (CH₂)₃N=C(=O)NH— 762

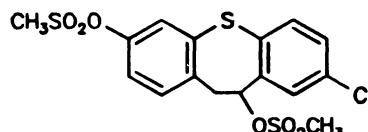


763



R¹ = CH₂CH₂OH 764

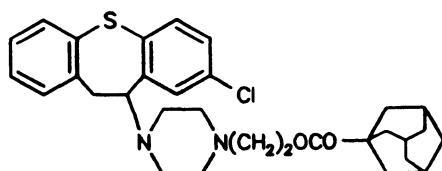
$R^1 = (CH_2)_3OH$ 765

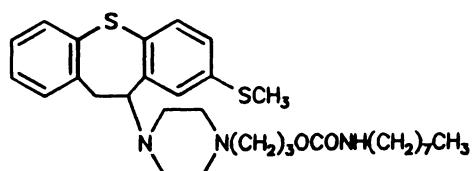


766

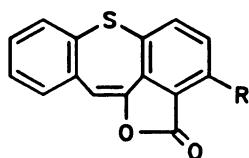
R¹ = CH₂CH₂OH 767

R¹ = (CH₂)₃OH 768

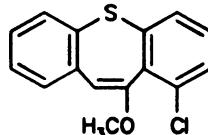

769


R = SCH₃, n = 3, m = 5 770

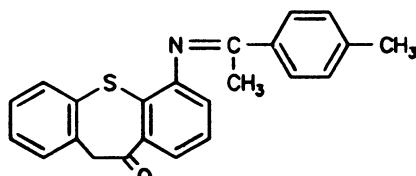
R = SCH₃, n = 3, m = 8 771


R = Cl , n = 2, m = 8 772

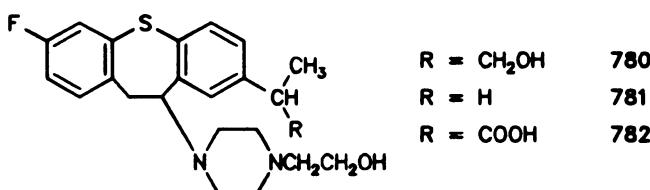
773



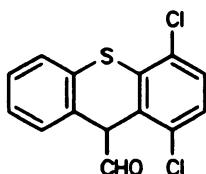
774



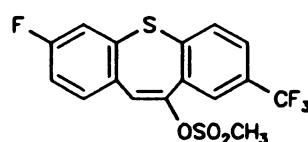
R = H 775


R = Cl 776

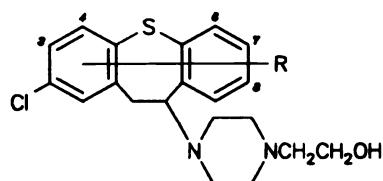
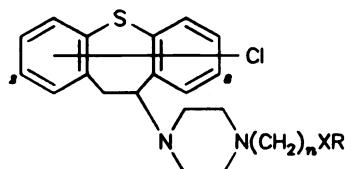
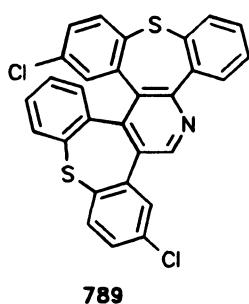
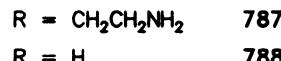
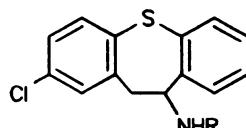
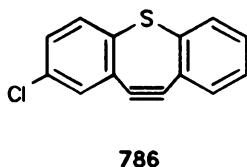
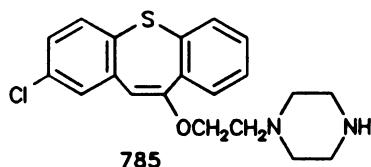
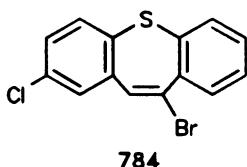
777

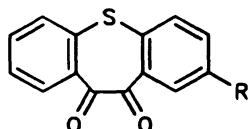


778

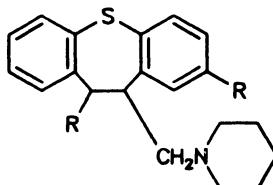

R = CH₂OH 780

R = H 781

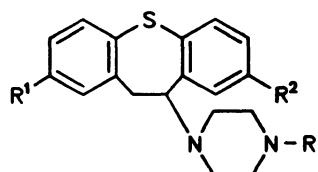
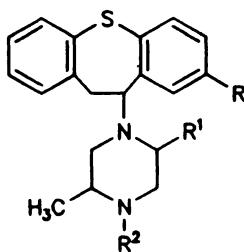









R = COOH 782

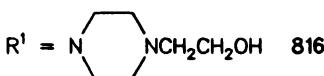
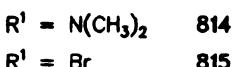
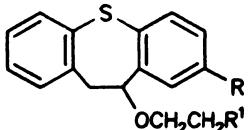
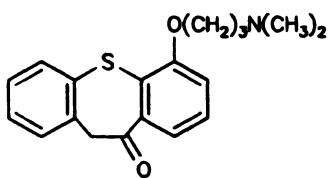
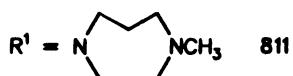
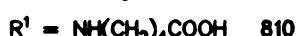
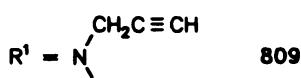
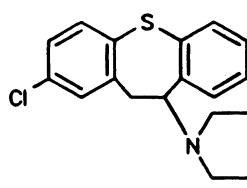
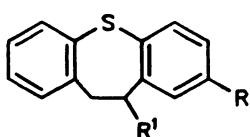
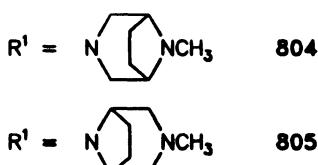
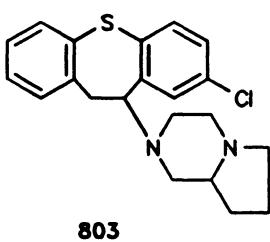


779



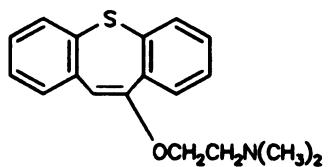
783

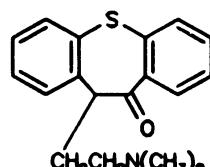












794

 $R = -O \quad 795$ $R = OH \quad 796$

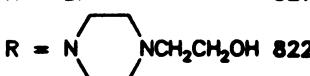

797

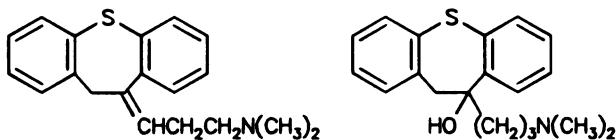
 $R = NO \quad 798$ $R = NH_2 \quad 799$ $R = N=CHAR \quad 800$ $R^1 = R^2 = H(CH_3) \quad 801$ $R^1 = CH_3, R^2 = H(CH)_3 \quad 802$



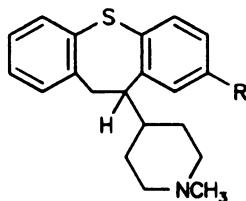
817


818

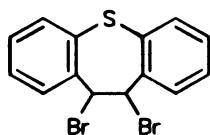

813


820

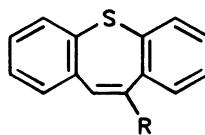
821



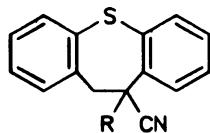
R = H	823
R = $\text{CH}_2\text{CH}_2\text{N}(\text{CH}_3)_2$	824
R = $\text{CH}_2\text{CH}_2\text{NHCH}_3$	825
R = CH_2COOH	826



827


828

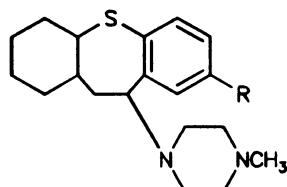
829


830

R = Br 831

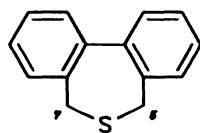
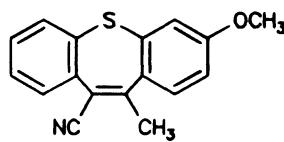
R = Cl 832

R = CN 833


R = H 834

R = CH₂CH₂N(CH₃)₂ 835R = CH₂CH₂Br 836

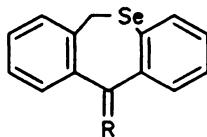
R = N 837

838

839

840

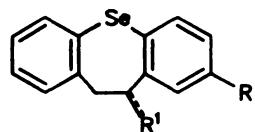


R = H 844

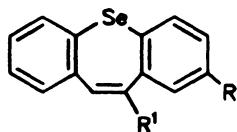
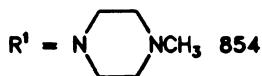
R = COOH 845

R = $\text{CH}_2\text{N}(\text{CH}_3)_2$ 846

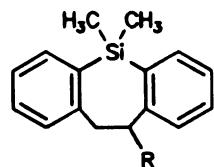
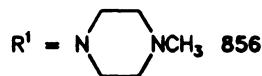
R = $(\text{CH}_2)_3\text{N}(\text{CH}_3)_2$ 847

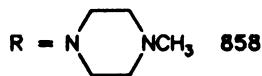

R = O 848

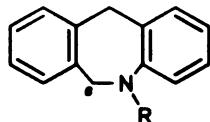
R = CH_2OH 849



R = $=\text{CH}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 850

R = $=\text{CH}(\text{CH}_2)_2\text{NHCH}_3$ 851



R = $\text{CH}_2\text{CH}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 852

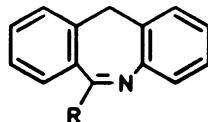

R¹ = 0



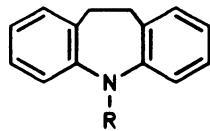
R¹ = H 855

R = Br

R = H

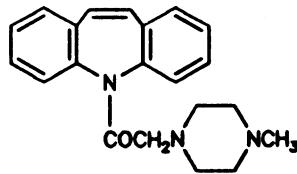

859

R = (CH₂)₃N(CH₃)₂


860

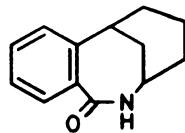
(+)

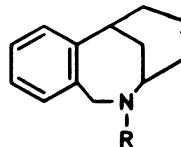
R = COCH₂CH₂S(CH₃)₂ | (-) 861



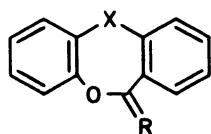
862

R = (CH₂)₃NH₂

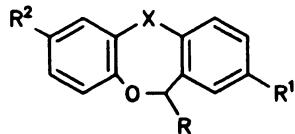

863


865

R = COCH₂N(Cyclohexyl)NCH₃

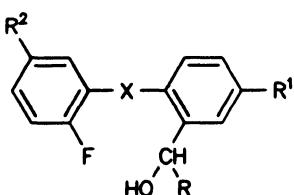

864

866

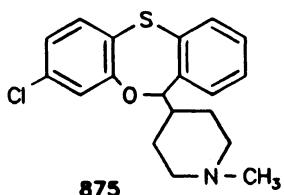


867

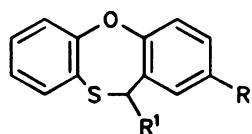
$R = H_2$ **868**


$R = O$ **869**

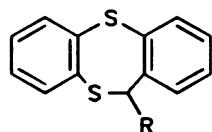
$R = (CH_2)_3N(CH_3)_2$ **870**

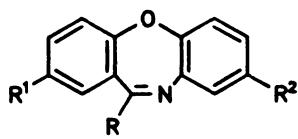

$R = -C_6H_{11}NCH_3$ **871**

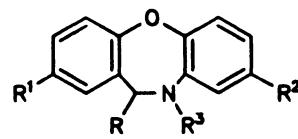
$R = -C_6H_{11}NCH_2CH_2OH$ **872**

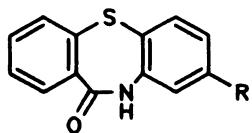


$R = (CH_2)_3N(CH_3)_2$ **873**

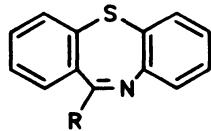

$R = -C_6H_{11}NCH_3$ **874**

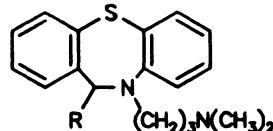

875

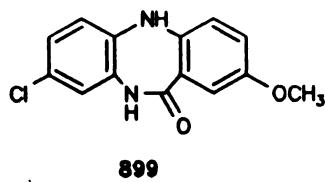

$R^1 = H$	876
$R^1 = COOH$	877
$R^1 = (CH_2)_2N(CH_3)_2$	878
$R^1 = (CH_2)_3N(CH_3)_2$	879
$R^1 =$	880
$R^1 =$	881

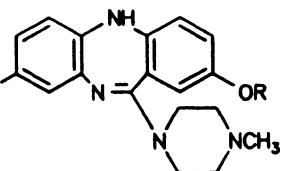

$R = H$	882
$R = COOH$	883
$R = (CH_2)_nN(CH_3)_2$	884

$R = H$ 885
 $R = CH_3$ 886
 $R = C_6H_5$ 887

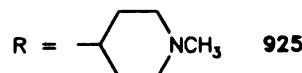
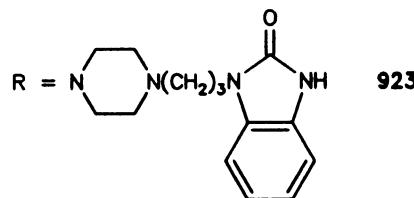
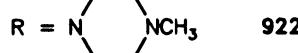
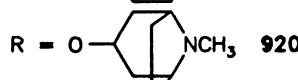
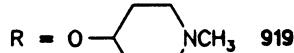
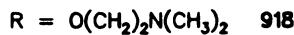
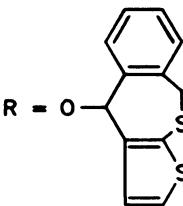
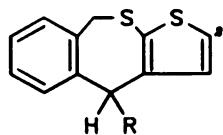

$R^3 = H$ 888
 $R^3 = (CH_2)_3N(CH_3)_2$ 889

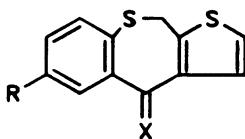

$R = H$ 890
 $R = Cl$ 891

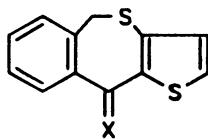

$R^1 = H$ 892
 $R^1 = (CH_2)_3N(CH_3)_2$ 893


$R = H$ 894
 $R = CH_3$ 895
 $R = C_6H_5$ 896

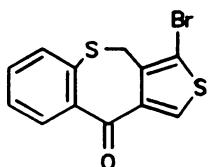
$R = CH_3$ 897
 $R = C_6H_5$ 898

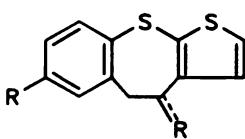










899


$R = CH_3$ 900
 $R = H$ 901

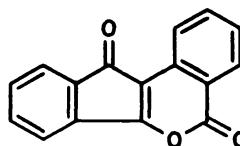
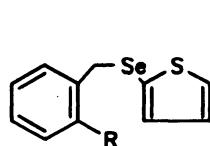
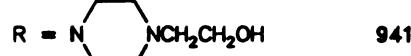
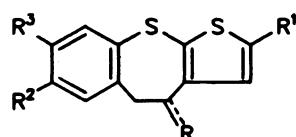
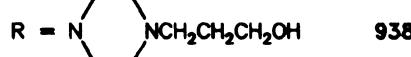
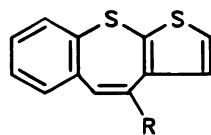
	$R^1 = -O$	902
	$R^1 = -CH(CH_2)_2N(CH_3)_2$	903
	$R^1 = -CH(CH_2)_2N$ NCH_3	904
	$R^1 =$	905
	$R^1 =$	906
	$R^1 =$	907
	$R^1 = (CH_2)_3N(CH_3)_2$	908
	$R^1 = (CH_2)_3N$ NCH_3	909
	$R^1 =$	910
	$R^1 =$	911
	$R^1 =$	912
$X = NCH_3$	913	
$X = S$	914	

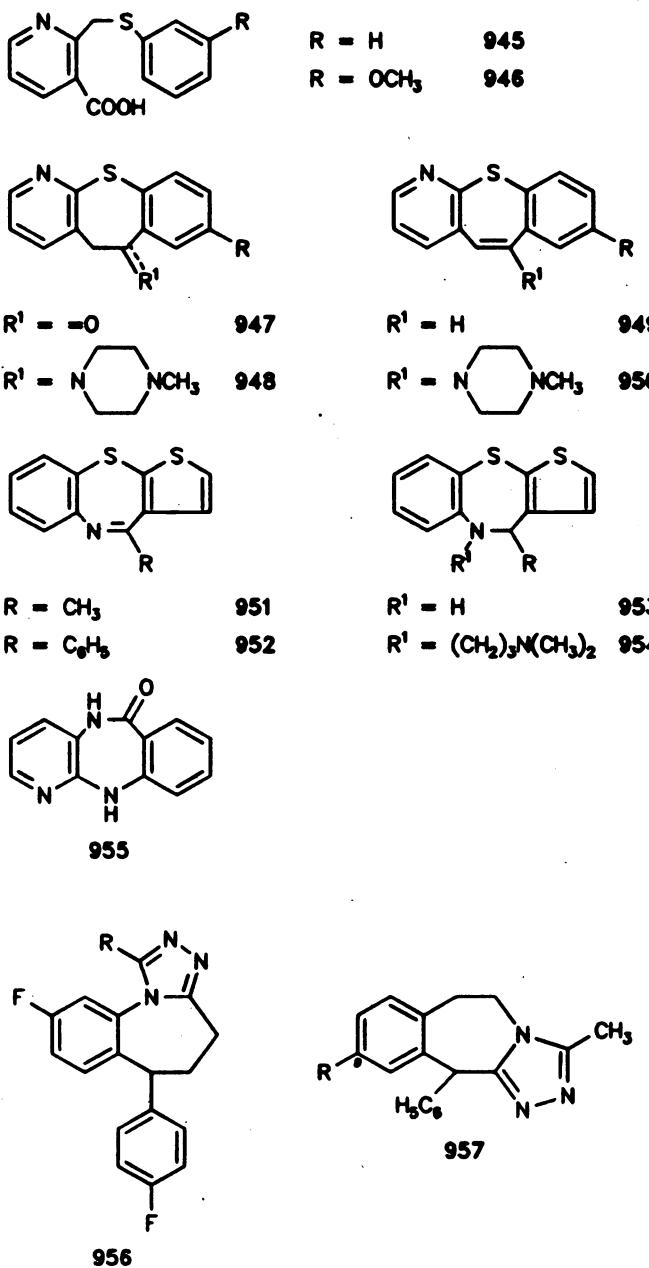


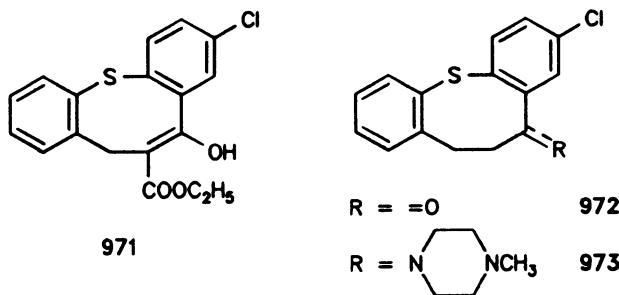
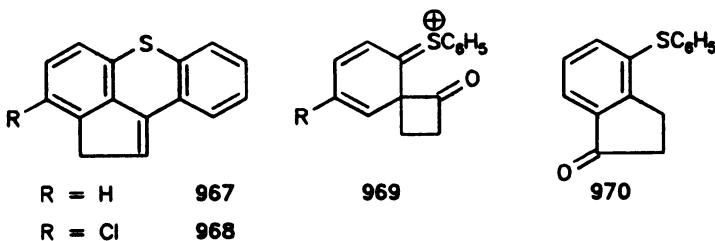
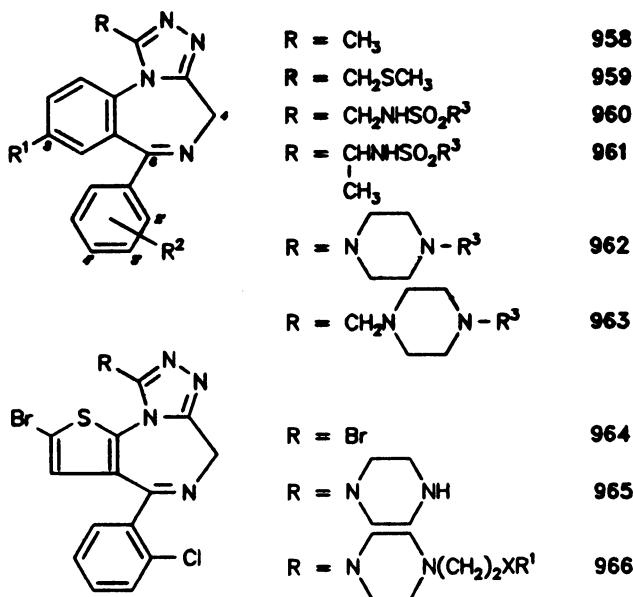

$X = -O$ 926
 $X = -CH_2CH_2N(CH_3)_2$ 927

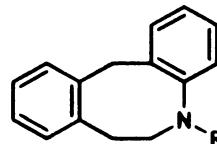
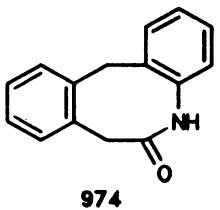
$X = -O$ 928
 $X = -CH_2CH_2N(CH_3)_2$ 929

930

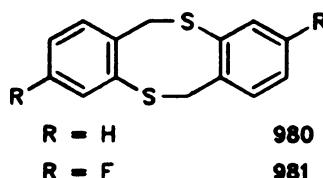
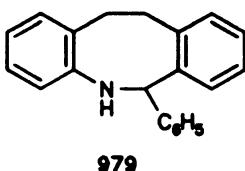
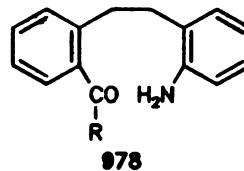
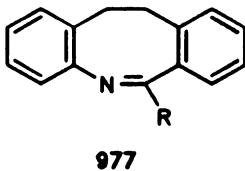






$R = -O$ 931

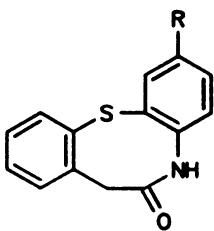

$R = -OH$ 932

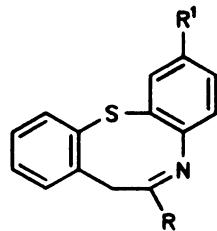



$R = -OCH_2CH_2N(CH_3)_2$ 933

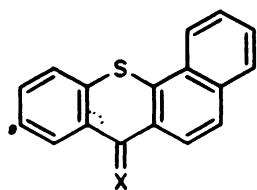


$R = -Cl$ 934

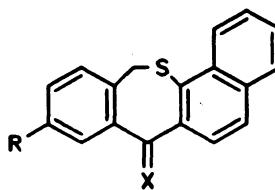
$R = N$ NCH_3 935

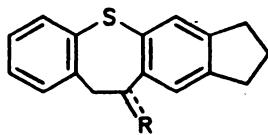





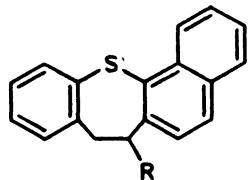
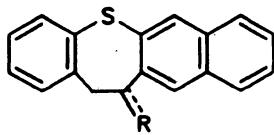


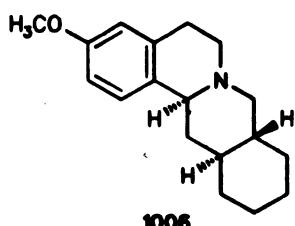
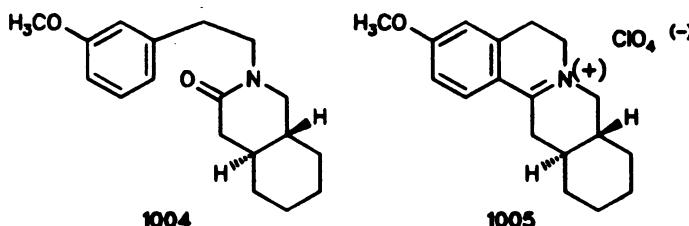
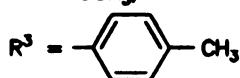
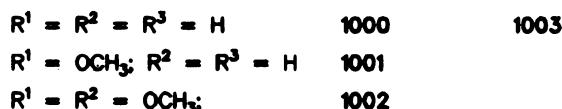
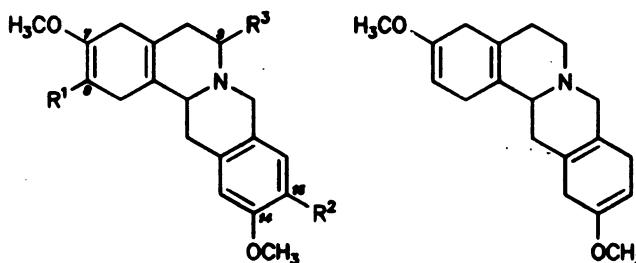
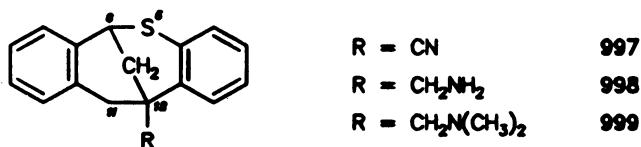
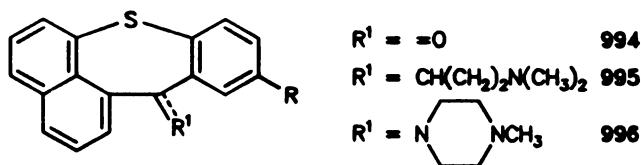

$R = H$ 975
 $R = (CH_2)_3N(CH_3)_2$ 976

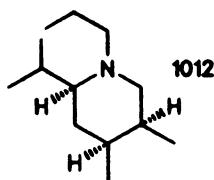
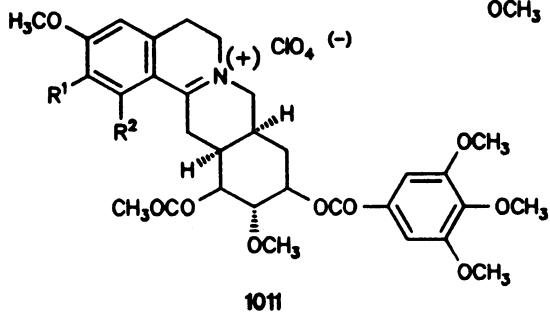
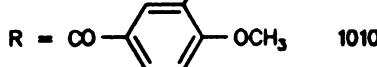
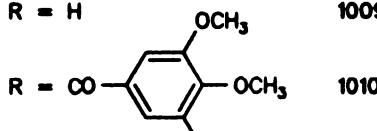
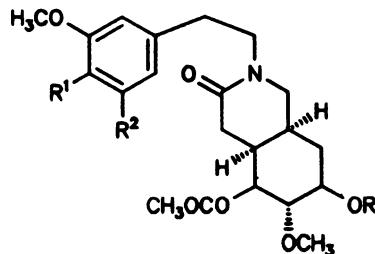
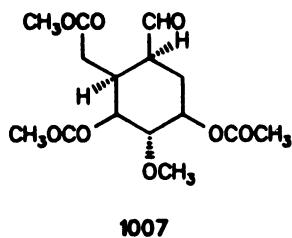

$R = H$ 980
 $R = F$ 981

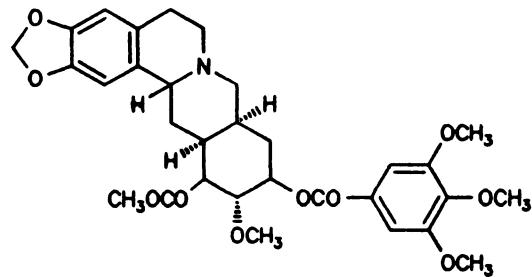
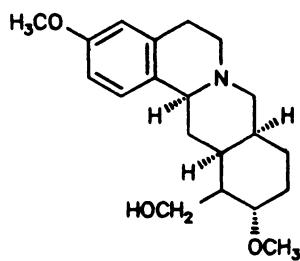
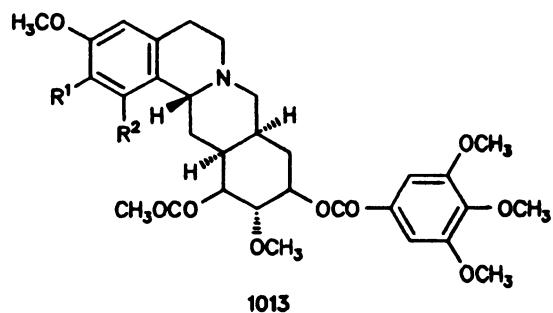

$R = H$ 982
 $R = Cl$ 983

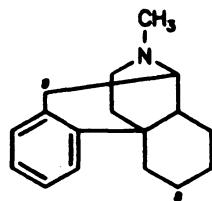

$R = NHCH_2CH(CH_3)_2$ 984
 $R = -C_6H_4-CH_3$ 985

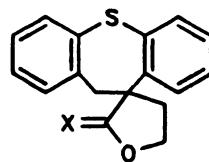


$X = O$ 986
 $X = \text{CH}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 987








$X = O$ 988
 $X = \text{CH}(\text{CH}_2)_2\text{N}(\text{CH}_3)_2$ 989

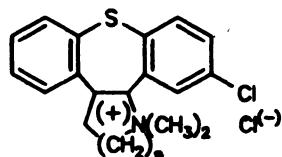







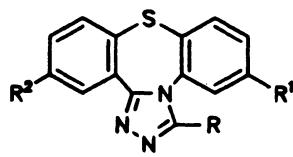



$R = -O$ 990
 $R = \text{N}(\text{CH}_3)_2$ 991


993



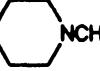
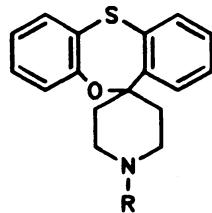
1015


1016

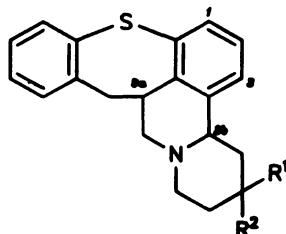
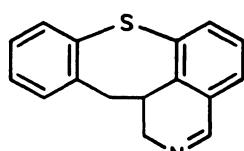

1017

X = NH

X = O 1018



1019

1020

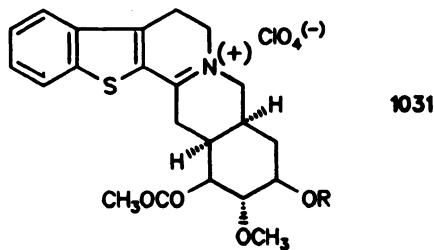
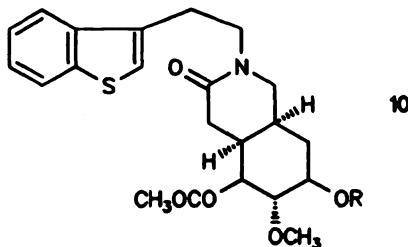


R = H

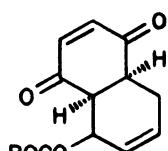
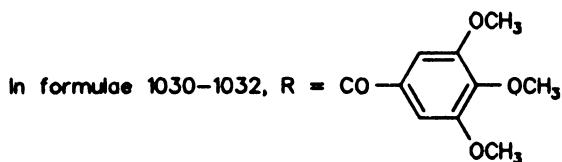
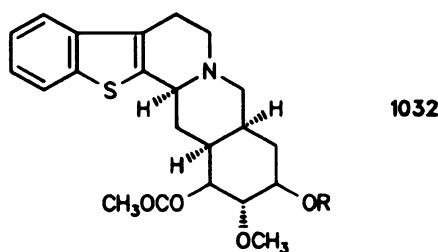
R = Br 1021

R = N NCH3 1022

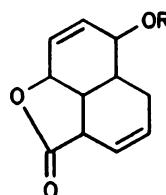
R = COOC2H5 1023

R = CH3 1024

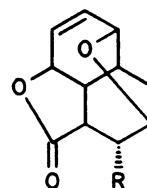
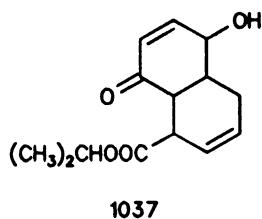



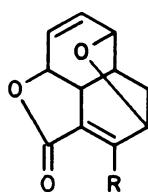



$R^1 R^2 = = O$ 1026

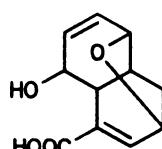
$R^1 = OH, R^2 = C(CH_3)_3$ 1027

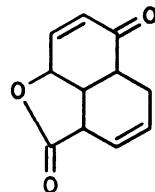

$R^1 = OH, R^2 = CH(CH_3)_2$ 1028

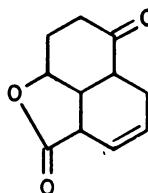
$R^1 = OH, R^2 = H$ 1029


R = CH₃ 1033
 R = CH(CH₃)₂ 1034

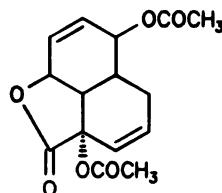

R = H 1035
 R = COCH₃ 1036

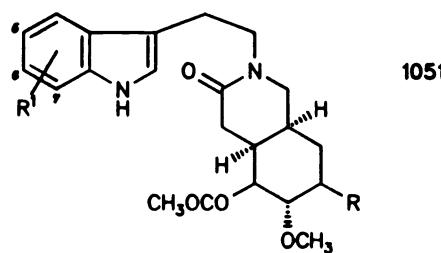

R = Br 1038
 R = OCH₃ 1039
 R = N(CH₃)₂ 1040
 R = CH₃ 1041
 R = C₂H₅ 1042
 R = H 1043

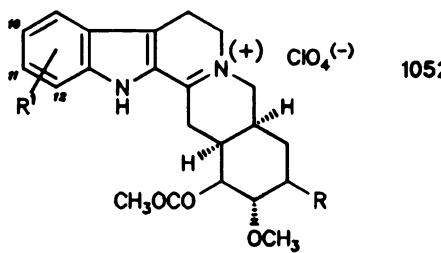

R = H 1044

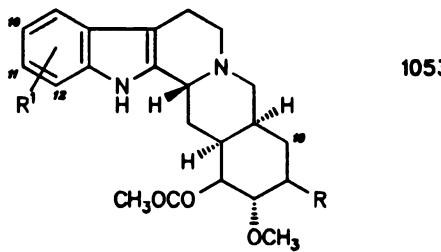
R = CH₃ 1045

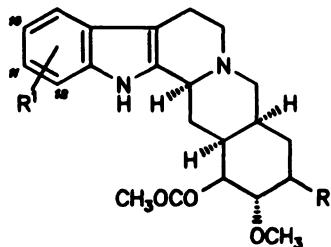
1046

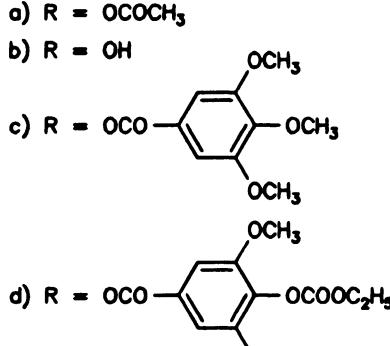

1047

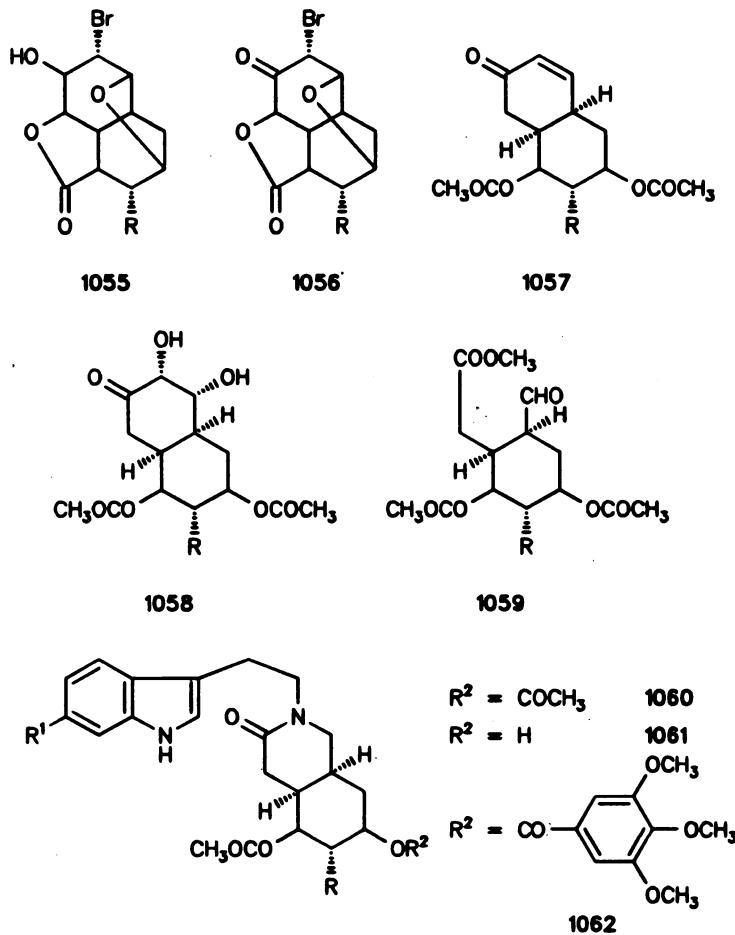

1048

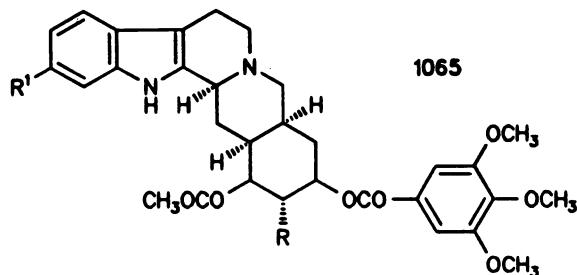
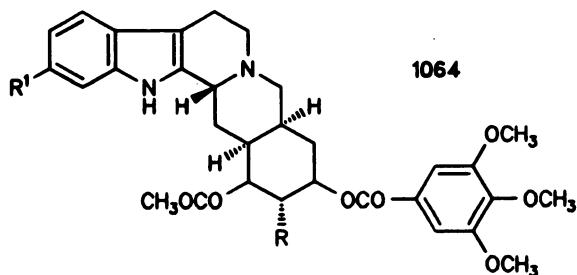
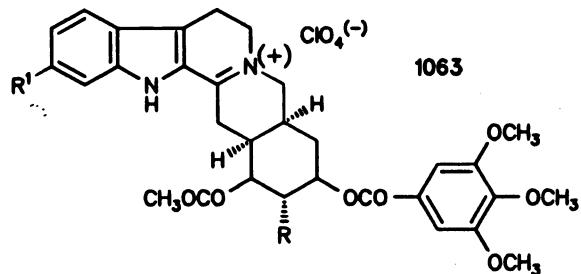

1049

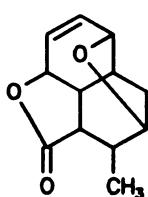

1050

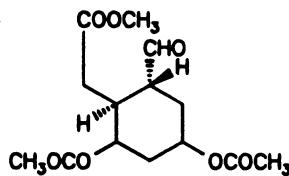

1051

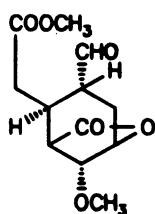

1052

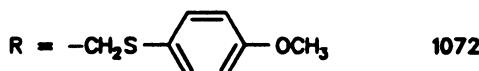
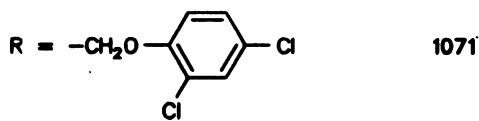
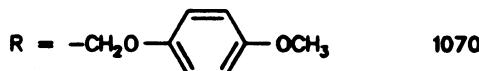
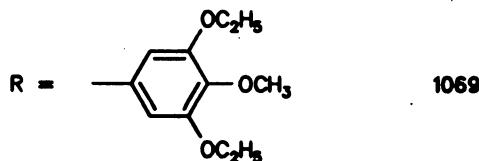
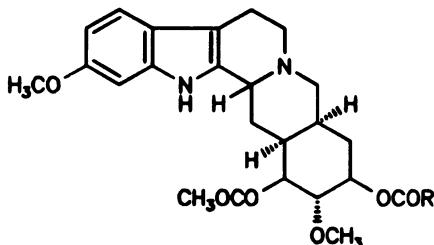


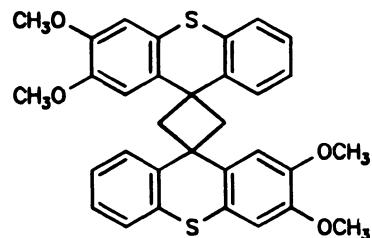



1053


1054

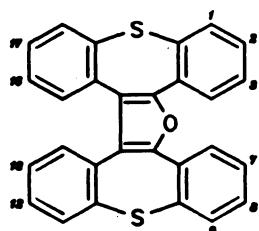



In formulae 1055-1065 a) $R = \text{CH}_3$, $R' = \text{OCH}_3$
 b) $R = \text{C}_2\text{H}_5$, $R' = \text{OCH}_3$
 c) $R = R' = \text{H}$

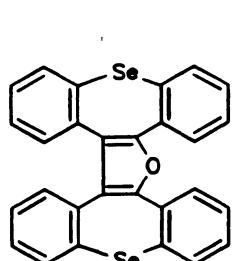





1066

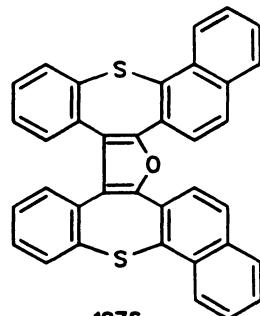


1067



1068




1073

1074

1075

1076

8 REFERENCES

8.1 PART A

This part represents a condensed bibliography of papers and patents prepared by the author of this review. The main part of the bibliography is formed by citations of the original articles and review articles. Communications (lectures) are cited only in cases when their full text was published or the abstract appeared as a journal publication or in an internationally accessible medium. Preliminary communications and patents are cited together with the corresponding original papers. The overlapping of patents and original papers is mostly not perfect; the patents are cited only once. The references are arranged according to the years and within the years according to the alphabetical order of the authors.

1944

1. Poupa O., Protiva M., Kostelecký A.: *Cas. Lek. Česk.* **83**, 1211 (1944).

1945

2. Protiva M.: *Cas. Česk. Lekarn.* **58**, 24 (1945).

1946 - 1947

3. Protiva M.: *Chem. Listy* **40**, 291 (1946).

4. Protiva M.: *Chem. Listy* **40**, 293 (1946).

5. Protiva M.: *Chem. Listy* **40**, 189 (1946); **41**, 166, 195, 282 (1947); **44**, 94 (1950).

6. Protiva M.: *Chem. Listy* **40**, 296 (1946); **43**, 44 (1949); *Chémie* **3**, 100 (1947); **6**, 161 (1950).

1948

7. Protiva M.: *Chem. Listy* **42**, 44 (1948).

8. Protiva M., Borovička M.: *Collect. Czech. Chem. Commun.* **13**, 582 (1948); *Chem. Listy* **43**, 261 (1949).

9. Protiva M., Jílek J.: *Chem. Listy* **42**, 175 (1948).

10. Protiva M., Jílek J., Kolinský J., Řeřicha V., Urban J.: *Collect. Czech. Chem. Commun.* **13**, 326 (1948); *Cas. Česk. Lekarn.* **60**, 25 (1947); *Chem. Listy* **42**, 2, 145 (1948); CH 269,654; CS 84,491, *Chem. Abstr.* **50**, 5771 (1956); CS 84,838, *Chem. Abstr.* **50**, 9451 (1956); CS 85,501, *Chem. Abstr.* **51**, 472 (1957); CS 85,561, *Chem. Abstr.* **51**, 491 (1957).

11. Protiva M., Šorm F.: *Collect. Czech. Chem. Commun.* **13**, 428 (1948).

12. Protiva M.: *Chem. Listy* **42**, 153 (1948); *Collect. Czech. Chem. Commun.* **13**, 340 (1948).

1949

13. Jílek J., Borovička M., Protiva M.: *Chem. Listy* **43**, 211 (1949); **44**, 120 (1950).

14. Jílek J., Urban J., Protiva M.: *Chem. Listy* **43**, 56 (1949).

15. Protiva M.: *Collect. Czech. Chem. Commun.* **14**, 354 (1949).

16. Protiva M.: *Collect. Czech. Chem. Commun.* **14**, 388 (1949); CS 84,863, *Chem. Abstr.* **47**, 3352 (1953); **50**, 9451 (1956); CS 84,864, *Chem. Abstr.* **50**, 9452 (1956); CS 85,411, *Chem. Abstr.* **50**, 10798 (1956).

17. Protiva M.: *Conf. Czech. Chem. Soc., Prague, February 1949*; *Cas. Česk. Lekarn.* **62**, 22 (1949).

18. Protiva M.: *Cas. Česk. Lekarn.* **62**, 143 (1949).

19. Protiva M., Borovička M.: *Chem. Listy* **43**, 179 (1949).
20. Protiva M., Jílek J., Kolínský J., Šustr M., Urban J.: *Chem. Listy* **43**, 254 (1949).
21. Protiva M., Jílek J., Řeřicha V.: *Chem. Listy* **43**, 257 (1949); AT 170,864, *Chem. Abstr.* **47**, 9368 (1953); CS 86,516, *Chem. Abstr.* **53**, 1261 (1959).
22. Protiva M., Prelog V.: *Helv. Chim. Acta* **32**, 621 (1949).
23. Řeřicha V., Protiva M.: *Chem. Listy* **43**, 176 (1949); CS 268,689, *Chem. Zentralbl.* **1951**, I, 3538; AT 170,862, CS 84,865, *Chem. Abstr.* **47**, 9370 (1953); 50, 10800 (1956).

1950

24. Jílek J., Protiva M.: *J. Chem. Soc.* **1950**, 188; CS 283,583, *Chem. Zentralbl.* **1953**, 4911; CH 283,915.
25. Jílek J., Protiva M.: *Chem. Listy* **44**, 49 (1950).
26. Jílek J., Protiva M.: *Collect. Czech. Chem. Commun.* **15**, 659 (1950).
27. Jílek J., Protiva M.: *Chemie* **6**, 86 (1950).
28. Protiva M.: *Biol. Listy* **31**, Suppl. I, 5 (1950); *Sborník Statei*, p. 5. Moscow 1952.
29. Protiva M., Řeřicha V., Borovička M., Jílek J.: *Collect. Czech. Chem. Commun.* **15**, 532 (1950).
30. Protiva M., Řeřicha V., Jílek J.: *Chem. Listy* **44**, 231 (1950); *Laboratorní chemické předpisy* (F.Šorm, Ed.), Vol. 1, p. 54. PV, Praha 1952.
31. Protiva M., Urban J.: *Chem. Listy* **44**, 91 (1950).
32. Protiva M., Urban J., Jílek J.: *Chem. Listy* **44**, 40 (1950).
33. Protiva M., Vejdělek Z.: *Collect. Czech. Chem. Commun.* **15**, 541 (1950); CS 81,446.
34. Řeřicha V., Protiva M.: *Chem. Listy* **44**, 232 (1950).
35. Urban J., Protiva M.: *Chem. Listy* **44**, 22 (1950).
36. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **15**, 671 (1950).

1951

37. Protiva M.: *Chem. Listy* **45**, 20 (1951); *Khimiya* **1**, 273 (1951).
38. Protiva M.: *Conf. Czech. Soc. Chem., Prague, May 1951*; *Chem. Listy* **46**, 120 (1952).
39. Protiva M.: *Conf. Chem., Barška Štiavnica, July 1951*; *Chem. Zvesti* **6**, 129 (1952).
40. Protiva M., Borovička M.: *Collect. Czech. Chem. Commun.* **16**, 57 (1951).
41. Protiva M., Exner O.: *Chem. Listy* **45**, 395 (1951); *Collect. Czech. Chem. Commun.* **16**, 689 (1951).
42. Protiva M., Jílek J.: *Chem. Listy* **45**, 159 (1951).
43. Protiva M., Jílek J.: *Chem. Listy* **45**, 207 (1951); *Collect. Czech. Chem. Commun.* **16**, 151 (1951); *Khimiya* **3**, 434 (1952).
44. Protiva M., Řeřicha V. (SPOFA): GB 662,591, *Chem. Abstr.* **46**, 11236 (1952); GB 686,004, *Chem. Abstr.* **48**, 4593 (1954); *Chem. Listy* **43**, 109 (1949).
45. Protiva M., Šustr M., Borovička M.: *Chem. Listy* **45**, 43 (1951).
46. Protiva M., Vejdělek Z., Jílek J.: *Chem. Listy* **45**, 478 (1951); *Collect. Czech. Chem. Commun.* **16**, 331 (1951); *Laboratorní chemické předpisy* (F.Šorm, Ed.), Vol. 1, p. 46. PV, Praha 1952.
47. Rudinger J., Ferles M., Protiva M.: *Chem. Listy* **45**, 309, 339 (1951).
48. Řeřicha V., Protiva M.: *Chem. Listy* **45**, 158 (1951).
49. Vejdělek Z., Protiva M.: *Chem. Listy* **45**, 448 (1951); *Collect. Czech. Chem. Commun.* **16**, 344 (1951).
50. Vejdělek Z., Protiva M.: *Chem. Listy* **45**, 451 (1951); *Collect. Czech. Chem. Commun.* **18**, 309 (1953).

1952

51. Exner O., Borovička M., Protiva M.: *Chem. Listy* **46**, 344 (1952); *Collect. Czech. Chem. Commun.* **18**, 270 (1953).
52. Exner O., Šimák J., Jílek J., Protiva M.: *Chem. Listy* **46**, 686 (1952); *Collect. Czech. Chem. Commun.* **19**, 330 (1954).
53. Jílek J., Borovička M., Protiva M.: *Chem. Listy* **46**, 292 (1952); *Collect. Czech. Chem. Commun.* **18**, 257 (1953).
54. Jílek J., Protiva M.: *Chem. Listy* **46**, 493 (1952); *Collect. Czech. Chem. Commun.* **18**, 309 (1953).
55. Pliml J., Knobloch E., Protiva M.: *Chem. Listy* **46**, 758 (1952); *Collect. Czech. Chem. Commun.* **18**, 616 (1954).
56. Pliml J., Protiva M.: *Chem. Listy* **46**, 772 (1952); *Collect. Czech. Chem. Commun.* **19**, 184 (1954).
57. Protiva M.: *Conf. Techn. Univ., Pardubice, March 1952; Conf. Czech. Soc. Chem., Olomouc, March 1952; Česk. Farm.* **1**, 704 (1952).
58. Protiva M., Borovička M.: *Chem. Listy* **46**, 427 (1952); *Collect. Czech. Chem. Commun.* **18**, 725 (1953).
59. Protiva M., Exner O., Borovička M., Pliml J.: *Chem. Listy* **46**, 37 (1952); *Collect. Czech. Chem. Commun.* **18**, 86 (1953).
60. Protiva M., Jílek J., Protiva M., Pliml J.: *Chem. Listy* **46**, 640 (1952); *Collect. Czech. Chem. Commun.* **19**, 618 (1954).
61. Protiva M., Jílek J., Vejdělek Z., Exner O.: *Chem. Listy* **46**, 551 (1952); *Collect. Czech. Chem. Commun.* **19**, 615 (1954).
62. Protiva M., Pliml J.: *Chem. Listy* **46**, 773 (1952); *Collect. Czech. Chem. Commun.* **19**, 182 (1954).
63. Protiva M., Pliml J., Jílek J., Borovička M., Řeřicha V.: *Chem. Listy* **46**, 346 (1952); *Collect. Czech. Chem. Commun.* **18**, 724 (1953).
64. Vejdělek Z., Trčka V., Protiva M.: *Chem. Listy* **46**, 423 (1952); *Collect. Czech. Chem. Commun.* **18**, 884 (1953); CS 84,183, *Chem. Abstr.* **50**, 7149 (1956).

1953

65. Exner O., Šimák V., Pliml J., Jílek J., Protiva M.: *Chem. Listy* **47**, 863 (1953); *Collect. Czech. Chem. Commun.* **19**, 619 (1954).
66. Hach V., Protiva M.: *Chem. Listy* **47**, 729 (1953); *Collect. Czech. Chem. Commun.* **18**, 684 (1953).
67. Jílek J., Protiva M.: *Chem. Listy* **47**, 1811 (1953); *Collect. Czech. Chem. Commun.* **19**, 617 (1954).
68. Jílek J., Protiva M.: *Chem. Listy* **47**, 1814 (1953); *Collect. Czech. Chem. Commun.* **19**, 617 (1954).
69. Jílek J., Šimák V., Protiva M.: *Chem. Listy* **47**, 874 (1953); *Collect. Czech. Chem. Commun.* **19**, 333 (1954).
70. Pliml J., Protiva M.: *Chem. Listy* **47**, 1204 (1953); *Collect. Czech. Chem. Commun.* **19**, 620 (1954).
71. Pliml J., Protiva M.: *Chem. Listy* **47**, 1874 (1953); *Collect. Czech. Chem. Commun.* **19**, 620 (1954).
72. Protiva M.: *Conf. Chem., Banská Štiavnica, July 1953; Proc. Conf.*, p. 189 (1953).
73. Protiva M.: *Conf. Czech. Pharm. Soc., Prague, September 1953; Česk. Farm.* **3**, 138 (1954).
74. Protiva M., Exner O.: *Chem. Listy* **47**, 213 (1953); *Collect. Czech. Chem. Commun.* **19**, 524 (1954); CS 83,205, *Chem. Abstr.* **50**, 7140 (1956).
75. Protiva M., Exner O.: *Chem. Listy* **47**, 736 (1953); *Collect. Czech. Chem. Commun.* **19**, 615 (1954).
76. Protiva M., Exner O.: *Chem. Listy* **47**, 1038 (1953); *Collect. Czech. Chem. Commun.* **19**, 616 (1954).
77. Protiva M., Exner O.: *Chem. Listy* **47**, 1481 (1953); *Collect. Czech. Chem. Commun.* **19**, 531 (1954).

78. Protiva M., Jílek J.: *Základy pracovní techniky v organicko-chemické laboratoři*, pp. 1 -119. SNTL, Praha 1953.

79. Protiva M., Jílek J.: Chem. Listy 47, 219 (1953); Collect. Czech. Chem. Commun. 19, 614 (1954).

80. Protiva M., Jílek J., Exner O.: Chem. Listy 47, 580 (1953); Collect. Czech. Chem. Commun. 19, 1052 (1954).

81. Protiva M., Jílek J., Exner O., Borovička M., Pliml J., Šimák V., Šedivý Z.: Chem. Listy 47, 1621 (1953); Collect. Czech. Chem. Commun. 19, 732 (1954).

82. Protiva M., Jílek J., Vejdělek Z., Finglová P.: Chem. Listy 47, 584 (1953); Collect. Czech. Chem. Commun. 19, 614 (1954).

83. Protiva M., Novák L.: Chem. Listy 47, 881 (1953); Collect. Czech. Chem. Commun. 19, 536 (1954).

84. Protiva M., Novák L.: Chem. Listy 47, 885 (1953); Collect. Czech. Chem. Commun. 19, 541 (1954).

85. Protiva M., Pliml J.: Chem. Listy 47, 409 (1953); Collect. Czech. Chem. Commun. 18, 836 (1953).

86. Protiva M., Pliml J., Finglová P.: Chem. Listy 47, 1197 (1953); Collect. Czech. Chem. Commun. 19, 619 (1954).

87. Vejdělek Z., Kakáč B., Protiva M.: Chem. Listy 47, 1676 (1953).

1954

88. Borovička M., Protiva M.: Chem. Listy 48, 1374 (1954); Collect. Czech. Chem. Commun. 20, 273 (1955); CS 87,995, Chem. Abstr. 54, 2175 (1960); DE 1,228,619, Chem. Abstr. 66, 37429 (1967).

89. Buděšínský Z., Protiva M.: *Syntetická léčiva*, pp. 1 - 581. NČSAV, Praha 1954.

90. Exner O., Pliml J., Protiva M.: Chem. Listy 48, 65 (1954); Collect. Czech. Chem. Commun. 19, 1053 (1954).

91. Exner O., Protiva M.: Chem. Listy 48, 1550 (1954), Collect. Czech. Chem. Commun. 20, 757 (1955).

92. Jílek J., Pomykáček J., Protiva M.: Chem. Listy 48, 232 (1954); Collect. Czech. Chem. Commun. 19, 1053 (1954).

93. Jílek J., Protiva M.: Chem. Listy 48, 1584 (1954); Collect. Czech. Chem. Commun. 20, 738 (1955).

94. Knobloch E., Mácha F., Exner O., Protiva M.: Chem. Listy 48, 226 (1954); Collect. Czech. Chem. Commun. 19, 976 (1954).

95. Novák L., Protiva M.: Chem. Listy 48, 70 (1954); Collect. Czech. Chem. Commun. 19, 983 (1954).

96. Protiva M. in: *Laboratorní technika organické chemie* (B. Keil, Ed.), p. 108, 237, 637, 724. NČSAV, Prague 1954.

97. Protiva M., Exner O.: Chem. Listy 48, 1370 (1954); Collect. Czech. Chem. Commun. 20, 210 (1955).

1955

98. Borovička M., Šedivý Z., Jílek J., Protiva M.: Chem. Listy 49, 231 (1955); Collect. Czech. Chem. Commun. 20, 437 (1955).

99. Borovička M., Šedivý Z., Protiva M.: Chem. Listy 49, 777 (1955); Collect. Czech. Chem. Commun. 20, 738 (1955).

100. Hach V., Horáková Z., Protiva M.: Chem. Listy 49, 227 (1955); Collect. Czech. Chem. Commun. 20, 1257 (1955).

101. Jílek J., Protiva M.: Chem. Listy 49, 96 (1955); Collect. Czech. Chem. Commun. 20, 765 (1955).

102. Protiva M.: *Chémie antihistaminových látek a histaminové skupiny*, p. 1 - 762. NČSAV, Prague 1955.

103. Protiva M., Borovička M., Pliml J.: Chem. Listy 49, 1802 (1955); Collect. Czech. Chem. Commun. 21, 607 (1956).

104. Protiva M., Jílek J.: *Chem. Listy* **49**, 373 (1955); *Collect. Czech. Chem. Commun.* **20**, 736 (1955).
105. Protiva M., Jílek J., Novák L., Adlerová E., Šimák V., Knobloch E.: *Chem. Listy* **49**, 1198 (1955); *Collect. Czech. Chem. Commun.* **21**, 159 (1956); *XIVth Int. Congr. IUPAC, Zurich, July 1955*; Abstr. p. 199.
106. Protiva M., Kolinský J.: *Chem. Listy* **49**, 272 (1955); *Collect. Czech. Chem. Commun.* **20**, 737 (1955).
107. Protiva M., Mychajlyszyn V., Jílek J.: *Chem. Listy* **49**, 1045 (1955).
108. Protiva M., Šimák V.: *Chem. Listy* **49**, 374 (1955); *Collect. Czech. Chem. Commun.* **20**, 737 (1955).
109. Protiva M., Šimák V., Hach V., Exner O.: *Chem. Listy* **49**, 222 (1955); *Collect. Czech. Chem. Commun.* **20**, 810 (1955).

1956

110. Mychajlyszyn V., Jílek J., Protiva M.: *Chem. Listy* **50**, 1982 (1956); *Collect. Czech. Chem. Commun.* **22**, 799 (1957).
111. Novák L., Protiva M.: *Chem. Listy* **50**, 1500 (1956); *Collect. Czech. Chem. Commun.* **22**, 624 (1957).
112. Novák L., Protiva M.: *Chem. Listy* **50**, 16109 (1956); *Collect. Czech. Chem. Commun.* **22**, 1637 (1957).
113. Novák L., Protiva M.: *Chem. Listy* **50**, 1995 (1956); *Collect. Czech. Chem. Commun.* **23**, 663 (1958).
114. Novák L., Protiva M.: *Chem. Listy* **50**, 2004 (1956); *Collect. Czech. Chem. Commun.* **23**, 673 (1958).
115. Pliml J., Borovička M., Protiva M.: *Chem. Listy* **50**, 1630 (1956); *Collect. Czech. Chem. Commun.* **23**, 794 (1958).

116. Protiva M., Adlerová E.: *Chem. Listy* **50**, 1641 (1956); *Collect. Czech. Chem. Commun.* **22**, 1066 (1957); CS 85,856, *Chem. Abstr.* **52**, 2910 (1958); FR 1,232,911, *Chem. Zentralbl.* **1962**, 17927.
117. Protiva M., Borovička M., Cimler L., Šedivý Z.: *Chem. Listy* **50**, 1988 (1956); *Collect. Czech. Chem. Commun.* **23**, 712 (1958); CS 88,309, *Chem. Abstr.* **54**, 6587 (1960).

1957

118. Adlerová E., Novák L., Protiva M.: *Chem. Listy* **51**, 553 (1957); *Collect. Czech. Chem. Commun.* **23**, 681 (1958).
119. Borovička M., Protiva M.: *Cesk. Farm.* **6**, 129 (1957).
120. Borovička M., Protiva M.: *Chem. Listy* **51**, 1344 (1957); *Collect. Czech. Chem. Commun.* **23**, 1330 (1958); *Experientia* **13**, 291 (1957); CS 86,640, FR 1,181,474, *Chem. Abstr.* **54**, 2382 (1960).
121. Borovička M., Protiva M.: *Chem. Listy* **51**, 2118 (1957); *Collect. Czech. Chem. Commun.* **24**, 31 (1959).
122. Hach V., Protiva M.: *Chem. Listy* **51**, 1909 (1957); *Collect. Czech. Chem. Commun.* **23**, 1941 (1958); CS 86,660, FR 1,187,023, *Chem. Abstr.* **54**, 2383 (1960).
123. Hach V., Protiva M.: *Chem. Listy* **51**, 2099 (1957); *Collect. Czech. Chem. Commun.* **23**, 1902 (1958).
124. Jílek J., Protiva M.: *Cesk. Farm.* **6**, 113 (1957); BE 551,470, CS 85,855, *Chem. Abstr.* **52**, 2910 (1958); CS 86,639, FR 1,231,024, *Chem. Abstr.* **54**, 2277 (1960); CS 89,989, FR 1,232,909, *Chem. Abstr.* **54**, 2276 (1960).
125. Jílek J., Protiva M.: *Chem. Listy* **51**, 643 (1957); *Collect. Czech. Chem. Commun.* **23**, 692 (1958); *Experientia* **13**, 71 (1957); *XVth Int. Congr. IUPAC, Paris, July 1957*, Abstr. Vol. II, p. 263; CS 85,740, DE 1,028,119, *Chem. Abstr.* **54**, 2218 (1960); CS 86,469, DE 1,061,778, *Chem. Abstr.* **54**, 2296 (1960).
126. Novák L., Šrámková J., Votava Z., Protiva M.: *Cesk. Farm.* **6**, 365 (1957).
127. Protiva M., Jílek J., Hach V., Adlerová E., Mychajlyszyn V.: *Chem. Listy* **51**, 2109 (1957); *Collect. Czech. Chem. Commun.* **24**, 83 (1959).

128. Protiva M., Jílek J., Hachová E., Novák L., Vejdělek Z., Adlerová E.: *Chem. Listy* 51, 1915 (1957); *Collect. Czech. Chem. Commun.* 24, 74 (1959); CS 86,787, *Chem. Abstr.* 54, 1584 (1960).

129. Protiva M., Mychajlyszyn V., Novák L., Borovička M., Jílek J., Adlerová E., Hach V.: *Cesk. Farm.* 6, 425 (1957); BE 564,464, CS 87,099, FR 1,246,163, *Chem. Abstr.* 54, 2383 (1960); CS 88,881, *Chem. Abstr.* 54, 2276 (1960); CS 88,882, FR 1,271,014, *Chem. Abstr.* 54, 2368 (1960); CS 90,407, *Chem. Abstr.* 54, 24395 (1960).

130. Protiva M., Mychajlyszyn V., Votava Z., Šrámková J.: *Cesk. Farm.* 6, 201 (1957).

1958

131. Hachová E., Protiva M.: *Cesk. Farm.* 7, 163 (1958).

132. Jílek J., Protiva M.: *Cesk. Farm.* 7, 453 (1958); CS 94,263, *Chem. Abstr.* 54, 24806 (1960).

133. Protiva M., Exner O., Borovička M.: *Cesk. Farm.* 7, 380 (1958).

134. Protiva M., Hach V.: *Collect. Czech. Chem. Commun.* 24, 207 (1959); CS 88,128, *Chem. Abstr.* 54, 2373 (1960); CS 90,271, *Chem. Abstr.* 54, 8865 (1960).

135. Vejdělek Z., Protiva M.: *Chem. Listy* 52, 2370 (1958); *Collect. Czech. Chem. Commun.* 24, 2614 (1959); CS 88,891, *Chem. Abstr.* 54, 2404 (1960); CS 90,381, *Chem. Abstr.* 54, 24852 (1960).

1959

136. Adlerová E., Protiva M.: *Collect. Czech. Chem. Commun.* 24, 1268 (1959); *Conf. Swiss Chem. Soc., Zurich, February 1958*; *Chimia* 12, 145 (1958); CS 89,550, *Chem. Abstr.* 54, 2364 (1960).

137. Mychajlyszyn V., Protiva M.: *Collect. Czech. Chem. Commun.* 24, 3955 (1959); CS 94,245, *Chem. Abstr.* 54, 24615 (1960).

138. Novák L., Protiva M.: *Collect. Czech. Chem. Commun.* 24, 3966 (1959); CS 93,860, GB 896,527, *Chem. Abstr.* 54, 24559 (1960); 57, 15005 (1962).

139. Protiva M.: *Cesk. Farm.* 8, 273 (1959); *Spec. Congr. Issue* p. 37 (1959).

140. Protiva M.: *Conf. Techn. Univ. Leuna-Merseburg Merseburg, October 1959*; *Wiss. Z. Techn. Hochsch. Leuna-Merseburg* 2, 135 (1959 - 1960).

141. Protiva M.: *Congr. Czech. Pharm. Soc., Karlovy Vary, September 1959*; *Abstr. (Argumenta Lectionum)*, p. 11, 97, 195 (1959); *Cesk. Farm.* 9, 315 (1960).

142. Protiva M., Borovička M., Hachová E.: *Cesk. Farm.* 8, 200 (1959); CS 92,926, *Chem. Abstr.* 55, 10390 (1961).

143. Protiva M., Hachová E.: *Collect. Czech. Chem. Commun.* 24, 1360 (1959); CS 91,424, *Chem. Abstr.* 54, 24615 (1960).

144. Protiva M., Rajšner M., Trčka V., Vejdělek Z.: *Experientia* 15, 54 (1959); *Collect. Czech. Chem. Commun.* 25, 245 (1960); CS 94,240, *Chem. Abstr.* 54, 465 (1960); CS 94,241, *Chem. Abstr.* 54, 24464 (1960); CS 94,242, *Chem. Abstr.* 54, 24464 (1960).

145. Protiva M., Vejdělek Z., Jílek J., Macek K.: *Collect. Czech. Chem. Commun.* 24, 3978 (1959); CS 94,243, *Chem. Abstr.* 54, 24799 (1960); CS 94,244, *Chem. Abstr.* 54, 24798 (1960).

1960

146. Adlerová E., Bláha L., Borovička M., Ernest I., Jílek J., Kakáč B., Novák L., Protiva M.: *Collect. Czech. Chem. Commun.* 25, 221 (1960); CS 94,237, *Chem. Abstr.* 54, 24613 (1960); CS 94,238, *Chem. Abstr.* 54, 24613 (1960); CS 94,239, *Chem. Abstr.* 54, 24614 (1960); CS 94,901, *Chem. Abstr.* 55, 14413 (1961).

147. Adlerová E., Ernest I., Hněvsová V., Jílek J., Novák L., Pomykáček J., Rajšner M., Sova J., Vejdělek Z., Protiva M.: Collect. Czech. Chem. Commun. 25, 784 (1960); Naturwissenschaften 46, 263 (1959); CS 96,101, Chem. Abstr. 55, 10478 (1961); CS 96,102, Chem. Abstr. 55, 9429 (1961).

148. Adlerová E., Protiva M.: Collect. Czech. Chem. Commun. 25, 528 (1960).

149. Adlerová E., Protiva M.: Collect. Czech. Chem. Commun. 25, 778 (1960); CS 86,470.

150. Jílek J., Protiva M.: Collect. Czech. Chem. Commun. 25, 165 (1960).

151. Novák L., Jílek J., Kakáč B., Ernest I., Protiva M.: Collect. Czech. Chem. Commun. 25, 2196 (1960); Tetrahedron Lett. 1959(5), 10; CS 96,528, Chem. Abstr. 55, 14413 (1961); CS 96,529, Chem. Abstr. 55, 14414 (1961); CS 96,783, Chem. Abstr. 55, 14413 (1961).

152. Protiva M. in: *Chemic steroidních sloučenin* (F. Šorm, Ed.), p. 553, 813. NČSAV, Praha 1960.

153. Protiva M.: *Conf. Ger. Pharm. Soc., Hamburg, November 1960*; Mitt. Dtsch. Pharm. Ges. 31, 129 (1961).

154. Protiva M., Jílek J., Novák L., Lukáč J., Votava Z.: CS 99,281, Chem. Abstr. 56, 3414 (1962).

155. Protiva M., Novák L.: CS 96,527, Chem. Abstr. 55, 10482 (1961).

156. Protiva M., Rajšner M., Jílek J.: Monatsh. Chem. 91, 703 (1960); CS 98,829, Chem. Abstr. 56, 514 (1962); CS 100,376, Chem. Abstr. 56, 8784 (1962); CS 101,606, Chem. Abstr. 57, 11175 (1962).

1961

157. Borovička M., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 26, 730 (1961).

158. Buděšínský Z., Protiva M.: *Synthetische Arzneimittel*, 2nd Ed., p. 1. Akademie-Verlag, Berlin 1961.

159. Ernest I., Protiva M.: Collect. Czech. Chem. Commun. 26, 1137 (1961); Naturwissenschaften 47, 156 (1960).

160. Jílek J., Ernest I., Novák L., Rajšner M., Protiva M.: Collect. Czech. Chem. Commun. 26, 687 (1961); Tetrahedron Lett. 1959 (11), 12; CS 96,924, Chem. Abstr. 55, 16585 (1961); CS 100,377, Chem. Abstr. 56, 8782 (1962).

161. Jílek J., Kakáč B., Protiva M.: Collect. Czech. Chem. Commun. 26, 2229 (1961); CS 100,717, Chem. Abstr. 57, 9696 (1962).

162. Jílek J., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 26, 1145 (1961); CS 101,358, Chem. Abstr. 57, 11174 (1962); CS 101,616, Chem. Abstr. 57, 11258 (1962); CS 101,617, Chem. Abstr. 57, 11258 (1962); CS 104,257, Chem. Abstr. 58, 10252 (1963); CS 104,258, Chem. Abstr. 58, 10251 (1963); CS 104,323, Chem. Abstr. 58, 10253 (1963).

163. Marquet A., Horeau A., Jacques J., Novák L., Protiva M.: Collect. Czech. Chem. Commun. 26, 1475 (1961).

164. Novák L., Protiva M.: Collect. Czech. Chem. Commun. 26, 681 (1961); Naturwissenschaften 46, 579 (1959).

165. Protiva M. in: *Pharmacotherapeutica 1950 – 1959* (O. Hanč, Ed.), p. 71. State Med. Publ. House, Prague 1961.

166. Protiva M., Čapek A., Jílek J., Kakáč B.: Collect. Czech. Chem. Commun. 26, 1537 (1961).

167. Protiva M., Hněvsová-Seidlová V., Jirkovský I., Novák L., Vejdělek Z.: Česk. Farm. 10, 506 (1961); CS 102,062, Chem. Abstr. 57, 16521 (1962); CS 103,194, Chem. Abstr. 57, 16520 (1962).

168. Protiva M., Hněvsová-Seidlová V., Vejdělek Z., Jirkovský I., Votava Z., Metyšová J.: J. Med. Pharm. Chem. 4, 411 (1961); Česk. Farm. 10, 459 (1961); CS 99,623, Chem. Abstr. 56, 4704 (1962); CS 99,624, Chem. Abstr. 56, 4704 (1962).

169. Protiva M., Votava Z. in: *Pharmacotherapeutica 1950 – 1959* (O. Hanč, Ed.), p. 267. State Med. Publ. House, Prague 1961.

170. Rajšner M., Kakáč B., Protiva M.: *Collect. Czech. Chem. Commun.* **26**, 91 (1961).

171. Vejdělek Z., Trčka V., Protiva M.: *J. Med. Pharm. Chem.* **3**, 427 (1961); CS 97,859, *Chem. Abstr.* **56**, 5969 (1962).

1962

172. Čapek A., Tadra M., Kakáč B., Ernest I., Protiva M.: *Folia Microbiol. (Prague)* **7**, 253 (1962); *Chem. Abstr.* **57**, 15602 (1962).

173. Ernest I., Protiva M. (SPOFA): CS 107,597, U.S. 3,167,558, *Chem. Abstr.* **60**, 578 (1964); CS 109,923, *Chem. Abstr.* **60**, 15931 (1964); *Collect. Czech. Chem. Commun.* **29**, 266 (1964).

174. Novák L., Borovička M., Protiva M.: *Collect. Czech. Chem. Commun.* **27**, 1261 (1962).

175. Novák L., Protiva M.: *Collect. Czech. Chem. Commun.* **27**, 2413 (1962); CS 106,506, *Chem. Abstr.* **60**, 1716 (1964).

176. Novák L., Protiva M.: *Collect. Czech. Chem. Commun.* **27**, 2702 (1962); CS 106,499, *Chem. Abstr.* **60**, 1670 (1964).

177. Protiva M., Novák L., Borovička M.: *Collect. Czech. Chem. Commun.* **27**, 559 (1962); *XVIIth Int. Congr. IUPAC, Paris, July 1957; Abstr. Vol. II*, 264; *Angew. Chem.* **69**, 687 (1957); CS 88,615, *Chem. Abstr.* **54**, 2218 (1960).

178. Protiva M., Novák L., Šedivý Z.: *Collect. Czech. Chem. Commun.* **27**, 2102 (1962); CS 106,505, *Chem. Abstr.* **60**, 1713 (1964); CS 106,546, *Chem. Abstr.* **60**, 1642 (1964).

179. Protiva M., Rajšner M., Seidlová V., Adlerová E., Vejdělek Z.: *Experientia* **18**, 326 (1962); *Cesk. Farm.* **11**, 404 (1962); CS 105,590, FR 1,332,145, *Chem. Abstr.* **59**, 10010 (1963); **60**, 2916 (1964).

180. Rajšner M., Seidlová V., Protiva M.: *Cesk. Farm.* **11**, 451 (1962); CS 107,353, *Chem. Abstr.* **60**, 1656 (1964); CS 107,632, *Chem. Abstr.* **60**, 1718 (1964).

181. Seidlová V., Šedivý Z., Protiva M.: *Cesk. Farm.* **11**, 308 (1962); CS 102,918, *Chem. Abstr.* **57**, 16495 (1962); CS 106,522, *Chem. Abstr.* **61**, 5568 (1964).

182. Vejdělek Z., Protiva M.: *Cesk. Farm.* **11**, 3 (1962); CS 106,370, *Chem. Abstr.* **60**, 483 (1964).

1963

183. Adlerová E., Seidlová V., Protiva M.: *Cesk. Farm.* **12**, 122 (1963); CS 107,631, *Chem. Abstr.* **60**, 1718 (1964).

184. Ernest I., Jílek J., Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 1022 (1963); CS 97,851, *Chem. Abstr.* **55**, 586 (1961); CS 101,203, *Chem. Abstr.* **57**, 11259 (1962); CS 104,290, *Chem. Abstr.* **58**, 9157 (1963).

185. Ernest I., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 3106 (1963); CS 106,356, *Chem. Abstr.* **60**, 577 (1964).

186. Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 2577 (1963); CS 108,802, *Chem. Abstr.* **60**, 8079 (1964).

187. Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 2582 (1963); CS 108,565, *Chem. Abstr.* **60**, 8079 (1964).

188. Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 3096 (1963).

189. Protiva M. in: *Laboratorní technika organické chemie*, 2nd Ed. (B. Keil, Ed.), pp. 119, 251, 725, 908. NČSAV, Praha 1963.

190. Protiva M., Jílek J., Pelz K.: *XIXth Int. Congr. IUPAC, London, July 1963; Abstr. A*, 244 (1963); *Collect. Czech. Chem. Commun.* **30**, 463 (1965); CS 111,215, *Chem. Abstr.* **62**, 14707 (1965).

191. Protiva M., Jílek J., Pomykáček J., Jirkovský I., Vejdělek Z.: *Collect. Czech. Chem. Commun.* **28**, 2627 (1963); CS 109,232, *Chem. Abstr.* **60**, 15842 (1964); CS 109,233, *Chem. Abstr.* **60**, 15842 (1964); CS 109,234, *Chem. Abstr.* **60**, 15839 (1964).
192. Protiva M., Vejdělek Z., Rajšner M.: *Collect. Czech. Chem. Commun.* **28**, 629 (1963); CS 105,266, *Chem. Abstr.* **59**, 9993 (1963); CS 105,267, *Chem. Abstr.* **59**, 3896 (1963); CS 105,955, *Chem. Abstr.* **59**, 3896 (1963).
193. Rajšner M., Adlerová E., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 1031 (1963); CS 97,858, *Chem. Abstr.* **55**, 16571 (1961).
194. Seidlová V., Protiva M.: *Collect. Czech. Chem. Commun.* **28**, 2821 (1963).

1964

195. Adlerová E., Vejdělková P., Protiva M.: *Collect. Czech. Chem. Commun.* **29**, 97 (1964); CS 107,945, DE 1,235,905, *Chem. Abstr.* **61**, 5573 (1964); **67**, 11348 (1967); CS 107,946, *Chem. Abstr.* **60**, 1656 (1964); CS 109,517, FR 1,352,332, *Chem. Abstr.* **60**, 13194 (1964).
196. Ernest I., Kakáč B., Protiva M.: *Collect. Czech. Chem. Commun.* **29**, 13282 (1964); CS 107,595, *Chem. Abstr.* **60**, 431 (1964); CS 118,364, *Chem. Abstr.* **66**, 75908 (1967).
197. Jílek J., Pomykáček J., Jirkovský I., Protiva M.: *Cesk. Farm.* **13**, 229 (1964); CS 98,139, *Chem. Abstr.* **56**, 474 (1962); CS 99,122, *Chem. Abstr.* **56**, 474 (1962).
198. Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **29**, 400 (1964).
199. Protiva M., Jirkovský I.: CS 111,915, *Chem. Abstr.* **62**, 14632 (1965).
200. Protiva M., Rajšner M., Adlerová E., Seidlová V., Vejdělek Z.: *Collect. Czech. Chem. Commun.* **29**, 2161 (1964); CS 111,416, DE 1,214,244, *Chem. Abstr.* **62**, 14642 (1965); BE 646,051, CS 113,624, *Chem. Abstr.* **63**, 13226 (1965); CS 114,291, *Chem. Abstr.* **64**, 17560 (1966); CS 115,607, *Chem. Abstr.* **65**, 2236 (1966).
201. Vejdělek Z., Protiva M.: *Cesk. Farm.* **13**, 49 (1964); CS 120,486, *Chem. Abstr.* **68**, 104834 (1968).
202. Vejdělek Z., Protiva M.: *Cesk. Farm.* **13**, 76 (1964).

1965

203. Ernest I., Jílek J., Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 2395 (1965).
204. Jílek J., Pelz K., Pavláčková D., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 1676 (1965); CS 117,726, *Chem. Abstr.* **66**, 76046 (1967).
205. Jílek J., Pomykáček J., Svátek E., Seidlová V., Rajšner M., Pelz K., Hoch B., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 445 (1965); *Conf. Pharm. Soc. DDR, Erfurt, May 1964*; *Mitt. Dtsch. Pharm. Ges.* **35**, 22 (1965); CS 113,250, *Chem. Abstr.* **64**, 17560 (1966); CS 117,725, *Chem. Abstr.* **66**, 55414 (1967).
206. Jílek J., Rajšner M., Pomykáček J., Protiva M.: *Cesk. Farm.* **14**, 294 (1965); CS 113,697, *Chem. Abstr.* **64**, 17550 (1966); CS 113,698, *Chem. Abstr.* **64**, 17550 (1966); CS 113,699, *Chem. Abstr.* **64**, 17548 (1966); CS 113,923, *Chem. Abstr.* **64**, 17548 (1966); BE 653,041, CS 115,089, *Chem. Abstr.* **64**, 8149 (1966).
207. Jílek J., Seidlová V., Svátek E., Protiva M., Pomykáček J., Šedivý Z.: *Monatsh. Chem.* **96**, 182 (1965); CS 120,193, *Chem. Abstr.* **67**, 73454 (1967); CS 120,194, *Chem. Abstr.* **68**, 78159 (1968); CS 120,195, *Chem. Abstr.* **68**, 78162 (1968); **69**, 96512 (1968); CS 124,529, *NL Appl.* **65** 12,186, *Chem. Abstr.* **65**, 7157 (1966); CS 120,933, *Chem. Abstr.* **68**, 87214 (1968); CS 121,632, *Chem. Abstr.* **68**, 87212 (1968); CS 122,951, *Chem. Abstr.* **69**, 43817 (1968).
208. Jirkovský I., Ernest I., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 3355 (1965); CS 113,378, *Chem. Abstr.* **64**, 17662 (1966); CS 113,412, *NL Appl.* **64** 12,116, *Chem. Abstr.* **63**, 10009 (1965).

209. Mori K., Wheeler D.M.S., Jílek J., Kakáč B., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 2236 (1965).

210. Novák L., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 3752 (1965).

211. Pelz K., Protiva M.: *Collect. Czech. Chem. Commun.* **30**, 2231 (1965); CS 111,880, *Chem. Abstr.* **62**, 14637 (1965).

212. Protiva M., Jílek J., Metyšová V., Seidlová V., Jirkovský I., Metyš J., Adlerová E., Ernest I., Pelz K., Pomykáček J.: *Farmaco, Ed. Sci.* **20**, 721 (1965); *Collect. Czech. Chem. Commun.* **32**, 3186 (1967); *150th Natl Amer. Chem. Soc. Meeting Atlantic City, September 1965*; *Abstr. Med. Chem.* **21P**; CS 120,744, *Chem. Abstr.* **68**, 105245 (1968); CS 121,091, *Chem. Abstr.* **68**, 105242 (1968); CS 121,092, *Chem. Abstr.* **68**, 105244 (1968); CS 121,093, *Chem. Abstr.* **68**, 105238 (1968); CS 124,219, *Chem. Abstr.* **69**, 46396 (1968); CS 124,218, *Chem. Abstr.* **69**, 67425 (1968); CS 124,220, *Chem. Abstr.* **69**, 67428 (1968); CS 124,533, *Chem. Abstr.* **69**, 67420 (1968); CS 130,735, *Chem. Abstr.* **73**, 55987 (1970); CS 130,737, *Chem. Abstr.* **73**, 66616 (1970); CS 130,738, *Chem. Abstr.* **73**, 56128 (1970); CS 130,739, *Chem. Abstr.* **73**, 55988 (1970).

213. Protiva M., Novák L., Vejdělek Z., Ernest I.: *Cesk. Farm.* **14**, 346 (1965); CS 110,924, *Chem. Abstr.* **62**, 1579 (1965); CS 110,925, *Chem. Abstr.* **62**, 1581 (1965); CS 112,288, *Chem. Abstr.* **62**, 16082 (1965); CS 116,566, *Chem. Abstr.* **65**, 5381 (1966); CS 116,567, *Chem. Abstr.* **65**, 5380 (1966).

214. Seidlová V., Metyšová J., Hradil F., Votava Z., Protiva M.: *Cesk. Farm.* **14**, 75 (1965); CS 116,610, *Chem. Abstr.* **65**, 5403 (1966).

215. Seidlová V., Rajšner M., Adlerová E., Protiva M.: *Monatsh. Chem.* **96**, 650 (1965); CS 118,520, *Chem. Abstr.* **67**, 82125 (1967); CS 120,573, *Chem. Abstr.* **68**, 21859 (1968); CS 121,977, *Chem. Abstr.* **68**, 87213 (1968); CS 122,942, *Chem. Abstr.* **69**, 43818 (1968).

1966

216. Borovička M., Pavlovská E., Lukáč J., Jílek J., Protiva M.: CS 123,528, *Chem. Abstr.* **68**, 104843 (1968).

217. Jílek J., Pelz K., Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **31**, 269 (1966); CS 113,255, *Chem. Abstr.* **64**, 17549 (1966); CS 113,256, *Chem. Abstr.* **64**, 17548 (1966); CS 113,696, *Chem. Abstr.* **64**, 17548 (1966).

218. Protiva M.: *Farmaco, Ed. Sci.* **21**, 76 (1966).

219. Protiva M.: *Symp. CNS Drugs, Hyderabad (India), January 1966*; *Proc. Symp.* p. 13. Council Sci. Indian Res., New Delhi 1966.

220. Protiva M., Jílek J.: *VIIIth Psychopharmacol. Conf., Jeseník, January 1966*; *Activ. Nerv. Super.* **8**, 388 (1966).

1967

221. Adlerová E., Protiva M.: *Collect. Czech. Chem. Commun.* **32**, 3177 (1967); CS 130,736, *Chem. Abstr.* **73**, 55880 (1970).

222. Borovička M., Kvis F., Chromík J., Protiva M.: *Collect. Czech. Chem. Commun.* **32**, 1738 (1967); CS 127,556, *Chem. Abstr.* **70**, 67943 (1969).

223. Jílek J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **32**, 1285 (1967); CS 120,378, *Chem. Abstr.* **68**, 78144 (1968).

224. Jirkovský I., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **32**, 3448 (1967); CS 123,846, *Chem. Abstr.* **69**, 43934 (1968); CS 127,542, *Chem. Abstr.* **70**, 68199 (1969).

225. Jirkovský I., Protiva M.: *Collect. Czech. Chem. Commun.* **32**, 1197 (1967); CS 113,377, *Chem. Abstr.* **64**, 17662 (1966); CS 113,765, *Chem. Abstr.* **64**, 17556 (1966).

226. Pelz K., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 2161 (1967); CS 113,254, *Chem. Abstr.* 64, 17550 (1966); CS 113,695, *Chem. Abstr.* 64, 17551 (1966).

227. Pelz K., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 2840 (1967); CS 127,337, *Chem. Abstr.* 70, 77989 (1969); CS 128,004, *Chem. Abstr.* 72, 3387 (1970).

228. Protiva M., Metyšová J.: *IXth Psychopharmacol. Conf., Jeseník, January 1967*; *Activ. Nerv. Suppl.* 9, 422 (1967).

229. Rajšner M., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 2854 (1967); *XXVth Congr. Pharm. Sci., Prague, August 1965*; *Proc. (Scientiae Pharm.) Vol. I*, p. 199. Butterworth (London) and Czech. Med. Press, Prague 1966; CS 115,241, FR 1,413,978, *Chem. Abstr.* 64, 5098 (1966); CS 122,178, *Chem. Abstr.* 68, 105182 (1968); CS 122,179, *Chem. Abstr.* 68, 105183 (1968); CS 125,917, *Chem. Abstr.* 70, 77931 (1969); CS 126,735, *Chem. Abstr.* 70, 68335 (1969); CS 126,736, *Chem. Abstr.* 70, 68336 (1969).

230. Rajšner M., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 2021 (1967).

231. Seidlová V., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 1747 (1967); CS 122,712, *Chem. Abstr.* 68, 59617 (1968); CS 126,833, *Chem. Abstr.* 70, 68424 (1969).

232. Seidlová V., Protiva M.: *Collect. Czech. Chem. Commun.* 32, 2826 (1967); CS 109,489, *Chem. Abstr.* 60, 15806 (1964); CS 122,664, *Chem. Abstr.* 68, 49361 (1968); CS 122,940, *Chem. Abstr.* 69, 18933 (1968); CS 127,567, *Chem. Abstr.* 70, 77668 (1969); CS 127,947, *Chem. Abstr.* 72, 12443 (1970); CS 132,623, *Chem. Abstr.* 73, 45222 (1970); CS 136,585, *Chem. Abstr.* 76, 14188 (1972).

1968

233. Adlerová E., Ernest I., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 2666 (1968); CS 129,201, *Chem. Abstr.* 72, 12608 (1970); CS 129,216, *Chem. Abstr.* 72, 12607 (1970).

234. Adlerová E., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 2941 (1968); CS 134,127, *Chem. Abstr.* 74, 141235 (1971); CS 134,128, *Chem. Abstr.* 74, 141234 (1971).

235. Jílek J., Metyšová J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 1831 (1968); CS 121,337, U.S. 3,351,599, *Chem. Abstr.* 68, 105247 (1968); CS 124,340, *Chem. Abstr.* 69, 86838 (1968); CS 130,741, *Chem. Abstr.* 73, 56125 (1970).

236. Pelz K., Ernest I., Adlerová E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 1852 (1968); CS 123,691, *Chem. Abstr.* 69, 43820 (1968); CS 130,740, GB 1,136,527, *Chem. Abstr.* 73, 56126 (1970).

237. Pelz K., Hradil F., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 1873 (1968); CS 129,655, *Chem. Abstr.* 72, 12727 (1970); CS 133,122, *Chem. Abstr.* 73, 98789 (1970); CS 133,123, *Chem. Abstr.* 73, 98937 (1970); CS 133,124, *Chem. Abstr.* 73, 98941 (1970).

238. Pelz K., Jirkovský I., Adlerová E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 1895 (1968); CS 123,188, *Chem. Abstr.* 69, 43819 (1968); CS 124,375, NL 150,455 (Appl. 66 08,618), *Chem. Abstr.* 67, 43821 (1967).

239. Pelz K., Rajšner M., Jílek J., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 2111 (1968); CS 130,501, *Chem. Abstr.* 72, 3404 (1970); CS 130,865, *Chem. Abstr.* 73, 55970 (1970); CS 132,449, *Chem. Abstr.* 73, 55966 (1970).

240. Pelz K., Seidlová V., Svátek E., Rajšner M., Protiva M.: *Collect. Czech. Chem. Commun.* 33, 1880 (1968); CS 114,266, *Chem. Abstr.* 64, 17493 (1966).

241. Protiva M.: *1Ind. Int. Symp. Pharm. Chem. IUPAC, Muenster/W., July 1968*; *Pure Appl. Chem.* 19, 131 (1969).

242. Rajšner M., Metyšová J., Protiva M.: *Farmaco, Ed. Sci.* 23, 140 (1968); CS 123,061, GB 1,081,360, *Chem. Abstr.* 68, 95849 (1968); 69, 43933 (1968); CS 126,737, *Chem. Abstr.* 70, 77930 (1969).

243. Rajšner M., Protiva M.: *Collect. Czech. Chem. Commun.* **33**, 1846 (1968); CS 124,935, *Chem. Abstr.* **69**, 67441 (1968).

244. Šindelář K., Protiva M.: *Collect. Czech. Chem. Commun.* **33**, 4315 (1968); CS 133,727, *Chem. Abstr.* **74**, 99909 (1971); CS 140,887, *Chem. Abstr.* **77**, 34577 (1972); CS 141,202, *Chem. Abstr.* **77**, 48290 (1972); CS 146,987, *Chem. Abstr.* **79**, 53373 (1973).

1969

245. Adlerová E., Trčka V., Šmejkal V., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 479 (1969).

246. Pelz K., Jirkovský I., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 3936 (1969).

247. Rajšner M., Metyš J., Jílek J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 1015 (1969); CS 143,379, *Chem. Abstr.* **77**, 152004 (1972); CS 144,401, *Chem. Abstr.* **77**, 164543 (1972).

248. Rajšner M., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 468 (1969); CS 126,069, *Chem. Abstr.* **70**, 68425 (1969); CS 141,212, *Chem. Abstr.* **77**, 34576 (1972).

249. Rajšner M., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 1963 (1969); CS 127,965, *Chem. Abstr.* **72**, 3403 (1970); CS 128,359, *Chem. Abstr.* **72**, 3402 (1970); CS 131,172, GB 1,183,788, *Chem. Abstr.* **73**, 66465 (1970); CS 131,173, GB 1,188,085, *Chem. Abstr.* **73**, 66464 (1970); CS 135,295, *Chem. Abstr.* **74**, 99648 (1971); CS 144,404, *Chem. Abstr.* **77**, 164546 (1972); CS 144,761, *Chem. Abstr.* **78**, 97510 (1973).

250. Rajšner M., Svátek E., Seidlová V., Adlerová E., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 1278 (1969); CS 141,894, *Chem. Abstr.* **77**, 88535 (1972); CS 143,378, *Chem. Abstr.* **77**, 152009 (1972); CS 143,737, *Chem. Abstr.* **77**, 164544 (1972).

251. Seidlová V., Pelz K., Adlerová E., Jirkovský I., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 2258 (1969); CS 125,916, *Chem. Abstr.* **70**, 68201 (1969); CS 128,823; CS 130,810, *Chem. Abstr.* **73**, 56124 (1970); CS 131,982, *Chem. Abstr.* **73**, 87938 (1970).

252. Seidlová V., Vejdělek Z., Rajšner M., Jirkovský I., Protiva M.: *Cesk. Farm.* **18**, 190 (1969).

253. Šindelář K., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 3801 (1969); CS 142,870, *Chem. Abstr.* **77**, 126687 (1972).

254. Šindelář K., Metyšová J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 2122 (1969); CS 144,402, *Chem. Abstr.* **77**, 164542 (1972); CS 144,403, *Chem. Abstr.* **77**, 164545 (1972).

255. Šindelář K., Svátek E., Metyšová J., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **34**, 3792 (1969); CS 145,850, *Chem. Abstr.* **79**, 78618 (1973); CS 146,235, *Chem. Abstr.* **79**, 78619 (1973); CS 146,236, *Chem. Abstr.* **79**, 78617 (1973).

1970

256. Jílek J., Pomykáček J., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **35**, 276 (1970); CS 135,293, *Chem. Abstr.* **74**, 100107 (1971); CS 136,684, *Chem. Abstr.* **76**, 14582 (1972); BE 740,421, CS 137,847, GB 1,226,249, *Chem. Abstr.* **74**, 125490, 141578 (1971); **75**, 49135 (1971).

257. Jílek J., Šindelář K., Metyšová J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **35**, 3721 (1970); *Naturwissenschaften* **56**, 374 (1969); CS 137,497, *Chem. Abstr.* **76**, 14374 (1972); CS 137,498, *Chem. Abstr.* **76**, 14370 (1972); CS 148,415, *Chem. Abstr.* **80**, 37157 (1974); CS 148,800, FR 71 27,825, *Chem. Abstr.* **80**, 59966 (1974).

258. Pelz K., Svátek E., Metyšová J., Hradil F., Protiva M.: *Collect. Czech. Chem. Commun.* **35**, 2623 (1970); CS 145,016, *Chem. Abstr.* **78**, 97486 (1973); CS 145,017, *Chem. Abstr.* **78**, 97487 (1973); CS 145,018, *Chem. Abstr.* **78**, 97485 (1973).

259. Protiva M.: *Activ. Nerv. Super.* **12**, 193 (1970).

260. Protiva M.: *Pharm. Ind.* **32**, 923 (1970).

261. Protiva M.: *VIIth Int. Congr. Coll. Int. Neuro-Psychopharmacol.*, Prague, August 1970; Abstr. p. 352.

262. Protiva M.: *VIIth Eur. Meeting Med. Chem.*, Bruxelles, September 1970; Chim. Ther. 5, 358 (1970).

263. Rajšner M., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 35, 378 (1970); CS 142,473, Chem. Abstr. 77, 88533 (1972).

264. Šindelář K., Protiva M.: Collect. Czech. Chem. Commun. 35, 3328 (1970); CS 147,107, Chem. Abstr. 79, 42373 (1973).

1971

265. Jílek J., Holubek J., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 36, 2824 (1971).

266. Jílek J., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 36, 4074 (1971); CS 149,349, Chem. Abstr. 80, 59967 (1974); CS 149,350, Chem. Abstr. 80, 59961 (1974).

267. Jílek J., Pomykáček J., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 36, 2226 (1971); CS 137,496, Chem. Abstr. 76, 14575 (1972); CS 143,482, DE 2,051,972, Chem. Abstr. 75, 35816 (1971); CS 143,483, Chem. Abstr. 77, 126683 (1972); CS 143,484, Chem. Abstr. 77, 126686 (1972); CS 143,485, DE 2,051,950, Chem. Abstr. 75, 35820 (1971); CS 143,486, Chem. Abstr. 77, 126689 (1972); CH 535,255, CS 143,487, Chem. Abstr. 77, 126690 (1972); CS 144,742, U.S. 3,725,409; BE 750,883, CS 145,870; CS 147,123, Chem. Abstr. 79, 42377 (1973); CS 147,944, Chem. Abstr. 79, 53366 (1973); CS 147,945, Chem. Abstr. 79, 53370 (1973); CS 148,414, Chem. Abstr. 80, 37159 (1974); BE 759,278, CS 148,494, Chem. Abstr. 80, 37161 (1974); CS 148,849, Chem. Abstr. 82, 170984 (1975); CS 148,850, Chem. Abstr. 80, 59965 (1974); CS 148,853, Chem. Abstr. 80, 70843 (1974); CH 542,875, CS 148,854, Chem. Abstr. 80, 70794 (1974); CS 148,855, Chem. Abstr. 80, 59958 (1974); CH 544,771, CS 149,764, Chem. Abstr. 80, 37156 (1974).

268. Jílek J., Seidlová V., Pelz K., Kakáč B., Holubek J., Svátek E., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 36, 3300 (1971).

269. Metyš J., Metyšová J., Votava Z., Benešová O., Dlabač A., Kazdová E., Franc Z., Queisnerová M., Kraus P., Vanček M., Hradil F., Jílek J., Protiva M.: Farmakoter. Zpr. 17, 131 (1971).

270. Protiva M.: Česk. Farm. 20, 349, 383 (1971).

271. Protiva M., Jílek J., Metyšová J.: *XIIith Psychopharmacol. Conf.*, Jeseník, January 1971; Activ. Nerv. Super. 13, 184 (1971).

272. Seidlová V., Novák L., Jílek J., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 36, 299 (1971).

273. Šindelář K., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 36, 3404 (1971); AT 302,330, CS 149,800; Chem. Abstr. 80, 37165 (1974).

274. Vejdělek Z., Protiva M.: Collect. Czech. Chem. Commun. 36, 1611 (1971); CS 149,330, Chem. Abstr. 80, 36919 (1974); CS 149,331, Chem. Abstr. 80, 36921 (1974); CS 149,332, Chem. Abstr. 80, 36922 (1974); CS 149,333, Chem. Abstr. 80, 36918 (1974); CS 149,334, Chem. Abstr. 80, 36876 (1974); CS 149,335, Chem. Abstr. 80, 36920 (1974).

1972

275. Červená I., Hradil F., Protiva M.: Collect. Czech. Chem. Commun. 37, 3124 (1972); CS 156,247, Chem. Abstr. 84, 59566 (1976); CS 156,248, Chem. Abstr. 84, 44157 (1976); CS 156,249, Chem. Abstr. 84, 44158 (1976).

276. Jílek J., Šindelář K., Protiva M.: *XIVth Psychopharmacol. Conf.*, Jeseník, January 1972; Activ. Nerv. Super. 14, 125 (1972).

277. Kopcová Z., Šedivý Z., Hradil F., Protiva M.: Collect. Czech. Chem. Commun. 37, 1371 (1972); CS 151,751, Chem. Abstr. 82, 140186 (1975); CS 151,753, Chem. Abstr. 82, 140,185 (1975); CS 151,754, Chem. Abstr. 84, 44141 (1976); CS 151,755, Chem. Abstr. 82, 140189 (1975); CS 151,759, Chem. Abstr. 82, 140183 (1975); CS 152,132, Chem. Abstr. 84, 44144 (1976).

278. Kvis F., Svátek E., Záhradník R., Protiva M.: Collect. Czech. Chem. Commun. 37, 3808 (1972).

279. Protiva M., Seidlová V., Svátek E., Hradil F.: Collect. Czech. Chem. Commun. 37, 868 (1972); CS 144,867, Chem. Abstr. 78, 97342 (1973); CS 146,873, Chem. Abstr. 79, 42205 (1973); CS 148,972, Chem. Abstr. 80, 120803 (1974); CS 148,973, Chem. Abstr. 80, 95770 (1974); CS 148,974, Chem. Abstr. 80, 95771 (1974).

280. Protiva M., Seidlová V., Svátek E., Kakáč B., Holubek J.: Collect. Czech. Chem. Commun. 37, 2081 (1972).

281. Šindelář K., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 37, 1734 (1972); CS 145,019, Chem. Abstr. 78, 124633 (1973); CS 148,852, Chem. Abstr. 80, 70842 (1974); CS 149,348, Chem. Abstr. 80, 59960 (1974); CS 151,758, Chem. Abstr. 83, 27917 (1975).

282. Šindelář K., Svátek E., Kakáč B., Protiva M.: Collect. Czech. Chem. Commun. 37, 1195 (1972).

283. Šindelář K., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 37, 3660 (1972).

284. Valenta V., Dlabač A., Hradil F., Protiva M.: Collect. Czech. Chem. Commun. 37, 1894 (1972); CS 149,490, Chem. Abstr. 80, 47674 (1974); CS 154,416, Chem. Abstr. 83, 9306 (1975).

285. Vejdělek Z., Hradil F., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 37, 3136 (1972); CS 154,968, Chem. Abstr. 83, 78966 (1975); CS 154,969, Chem. Abstr. 83, 96879 (1975); CS 154,970, Chem. Abstr. 83, 96878 (1975); CS 161,262, Chem. Abstr. 85, 159771 (1976).

286. Vejdělek Z., Hradil F., Protiva M.: Collect. Czech. Chem. Commun. 37, 3501 (1972); CS 156,239, Chem. Abstr. 84, 30766 (1976); CS 156,240, Chem. Abstr. 84, 30767 (1976).

1973

287. Bártl V., Metyšová J., Metyš J., Němec J., Protiva M.: Collect. Czech. Chem. Commun. 38, 2301 (1973); CS 160,402, Chem. Abstr. 86, 5493 (1977).

288. Bártl V., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 38, 1693 (1973); CS 153,855, Chem. Abstr. 84, 44146 (1976); CS 153,856, Chem. Abstr. 84, 44145 (1976).

289. Bártl V., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 38, 2778 (1973); CS 159,522, Chem. Abstr. 85, 21451 (1976); CS 159,523, Chem. Abstr. 85, 63088 (1976).

290. Bártl V., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 38, 1596 (1973).

291. Jílek J., Metyšová J., Svátek E., Jančík F., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 38, 599 (1973); *VIIIth Eur. Meeting Med. Chem., Bruxelles, September 1970*; Chim. Ther. 5, 368 (1970); CS 147,997, Chem. Abstr. 79, 53372 (1973); CS 147,998, Chem. Abstr. 79, 42547 (1973); CS 148,416, Chem. Abstr. 80, 37158 (1974); CS 148,851, DE 2,060,903, Chem. Abstr. 75, 63646 (1971); CS 149,346, Chem. Abstr. 80, 59963 (1974); CS 149,347, Chem. Abstr. 80, 59964 (1974); CS 152,647, Chem. Abstr. 82, 98015 (1975); CS 157,963, Chem. Abstr. 85, 46746 (1976).

292. Jílek J., Šindelář K., Dlabač A., Kazdová E., Pomykáček J., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 38, 1190 (1973); CS 149,351, DE 2,138,030, Chem. Abstr. 76, 140881 (1972); CS 152,024; CS 152,136, Chem. Abstr. 84, 44141 (1976); CS 157,341, Chem. Abstr. 84, 59568 (1976).

293. Jílek J., Šindelář K., Pomykáček J., Horešovský O., Pelz K., Svátek E., Kakáč B., Holubek J., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 38, 115 (1973); CS 131,189, FR 1,566,933, Chem. Abstr. 72, 90336 (1970); 73, 56127 (1970); CS 131,742, Chem. Abstr. 73, 45099 (1970); CS 148,417, Chem. Abstr. 80, 63866 (1974); CS 149,277, FR 2,151,568, ZA Appl. 71 4,647, Chem. Abstr. 78, 72209 (1973); 79, 92282 (1973); 80, 70836 (1974); CS 148,418, Chem. Abstr. 80, 37160 (1974); CS 157,310, Chem. Abstr. 84, 59567 (1976); CS 158,441, Chem. Abstr. 87, 167911 (1977).

294. Protiva M.: Farmaco, Ed. Sci. 28, 58 (1973).

295. Protiva M.: Activ. Nerv. Super. 15, 186 (1973).

296. Protiva M.: Med. Actual. (Drugs Today) 9, 199 (1973).

297. Rajšner M., Princová E., Grimová J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 1602 (1973); CS 158,482, *Chem. Abstr.* **84**, 180096 (1976).

298. Šindelář K., Kakáč B., Metyšová J., Protiva M.: *Farmac. Ed. Sci.* **28**, 256 (1973); *Collect. Czech. Chem. Commun.* **39**, 333 (1974).

299. Šindelář K., Kakáč B., Svátek E., Holubek J., Metyšová J., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 3321 (1973).

300. Šindelář K., Kakáč B., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 1579 (1973); CS 149,525, *Chem. Abstr.* **80**, 47619 (1974); CS 153,840, *Chem. Abstr.* **82**, 111952 (1975); CS 153,841, *Chem. Abstr.* **82**, 171049 (1975); CS 153,842, *Chem. Abstr.* **83**, 10141 (1975); CS 153,843, *Chem. Abstr.* **82**, 171050 (1975); CS 157,353, *Chem. Abstr.* **84**, 59569 (1976).

301. Šindelář K., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 2137 (1973); *VIIth Congr. Coll. Int. Neuro-Psychopharmacol., Copenhagen, August 1972*; *Psychopharmacologia* **26**, Suppl., 69 (1972); CS 153,836, *Chem. Abstr.* **82**, 97955 (1975); CS 153,837, *Chem. Abstr.* **82**, 73024 (1975); CS 153,838, *Chem. Abstr.* **82**, 171048 (1975); CS 157,949, *Chem. Abstr.* **85**, 46747 (1976).

302. Šindelář K., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 2484 (1973); CS 153,251, *Chem. Abstr.* **82**, 97956 (1975); CS 159,978, *Chem. Abstr.* **85**, 46745 (1976).

303. Šindelář K., Rajšner M., Červená I., Valenta V., Jílek J., Kakáč B., Holubek J., Svátek E., Mikšík F., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 3879 (1973); CS 160,865, *Chem. Abstr.* **86**, 89608 (1977); CS 168,238, *Chem. Abstr.* **89**, 6225 (1978).

304. Vejdělek Z., Kakáč B., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 2989 (1973); CS 160,383, *Chem. Abstr.* **86**, 29875 (1977); CS 162,159, *Chem. Abstr.* **85**, 192454 (1976).

305. Vejdělek Z., Kakáč B., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 2146 (1973).

306. Vejdělek Z., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **38**, 2768 (1973); CS 160,374, *Chem. Abstr.* **86**, 43736 (1977); CS 162,157, *Chem. Abstr.* **85**, 159772 (1976); CS 162,160, *Chem. Abstr.* **85**, 159773 (1976); CS 162,161, *Chem. Abstr.* **85**, 192455 (1976).

1974

307. Červená I., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 3733 (1974); CS 164,014, *Chem. Abstr.* **86**, 121371 (1977).

308. Jílek J., Metyšová J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 3338 (1974).

309. Jílek J., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 3153 (1974); CS 153,835, DE 2,228,283, *Chem. Abstr.* **78**, 84444 (1973); CS 156,878.

310. Kopicová Z., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 3147 (1974).

311. Protiva M.: *IXth Congr. Coll. Int. Neuro-Psychopharmacol., Paris, July 1974*; *J. Pharmacol. (Paris)* **5**, Suppl. 1, 5 (1974); *Med. Actual. (Drugs Today)* **12**, Suppl., 151 (1976).

312. Rajšner M., Svátek E., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 1366 (1974); CS 135,382, *Chem. Abstr.* **74**, 100016 (1971); CS 146,687, *Chem. Abstr.* **79**, 53282 (1973); CS 146,688, *Chem. Abstr.* **79**, 53284 (1973); CS 146,690, *Chem. Abstr.* **79**, 53281 (1973); CS 147,108, *Chem. Abstr.* **79**, 42333 (1973).

313. Šindelář K., Jílek J., Metyšová J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 3548 (1974); CS 164,015, *Chem. Abstr.* **86**, 155697 (1977).

314. Šindelář K., Metyšová J., Kakáč B., Holubek J., Svátek E., Jílek J., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **39**, 2099 (1974); *XVth Psychopharmacol. Conf., Jeseník, January 1973*; *Activ. Nerv. Super.* **15**, 97 (1973); CS 155,091, *Chem. Abstr.* **83**, 164232 (1975); CS 155,092, *Chem. Abstr.* **83**, 164233 (1975); CS 159,986, *Chem. Abstr.* **85**, 78163 (1976); CS 163,009, *Chem. Abstr.* **86**, 171498 (1977); CS 163,027, *Chem. Abstr.* **86**, 171499 (1977).

315. Valenta V., Metyšová J., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 39, 783 (1974); CS 160,454, Chem. Abstr. 86, 29617 (1977); CS 164,000, Chem. Abstr. 86, 140085 (1977); CS 164,001, Chem. Abstr. 86, 121370 (1977); CS 164,550, Chem. Abstr. 87, 6021 (1977).

316. Vejdělek Z., Dlabač A., Protiva M.: Collect. Czech. Chem. Commun. 39, 2819 (1974); CS 151,716, Chem. Abstr. 83, 9630 (1975); CS 169,192, Chem. Abstr. 88, 169834 (1978).

317. Vejdělek Z., Němec J., Protiva M.: Collect. Czech. Chem. Commun. 39, 617 (1974).

318. Vejdělek Z., Němec J., Šedivý Z., Tůma L., Protiva M.: Collect. Czech. Chem. Commun. 39, 2276 (1974); CS 160,881, Chem. Abstr. 86, 29876 (1977).

319. Vejdělek Z., Protiva M.: Collect. Czech. Chem. Commun. 39, 1596 (1974); CS 170,384, Chem. Abstr. 89, 42750 (1978).

1975

320. Červená I., Dlabač A., Němec J., Protiva M.: Collect. Czech. Chem. Commun. 40, 1612 (1975); CS 170,045, Chem. Abstr. 90, 72223 (1979).

321. Jílek J., Metyšová J., Němec J., Šedivý Z., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 40, 3386 (1975); CS 152,644, Chem. Abstr. 84, 44143 (1976); CS 152,646, Chem. Abstr. 82, 112105 (1975); CS 153,834, Chem. Abstr. 82, 140100 (1975); CS 163,010, Chem. Abstr. 86, 106654 (1977); CS 174,564, Chem. Abstr. 90, 121655 (1979).

322. Jílek J., Šindelář K., Rajšner M., Dlabač A., Metyšová J., Protiva M.: *XVIIth Psychopharmacol. Conf., Jeseník, January 1975*; Activ. Nerv. Super. 17, 215 (1975).

323. Jílek J., Šindelář K., Rajšner M., Dlabač A., Metyšová J., Votava Z., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 40, 2887 (1975); CS 155,093, Chem. Abstr. 83, 164231 (1975); CS 171,585, Chem. Abstr. 90, 6262 (1979); CS 172,732, Chem. Abstr. 90, 104006 (1979).

324. Kopcová Z., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 40, 3519 (1975).

325. Kopcová Z., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 40, 1960 (1975); CS 163,583, Chem. Abstr. 86, 171500 (1977).

326. Metyšová J., Protiva M.: *XVIIth Psychopharmacol. Conf., Jeseník, January 1975*; Activ. Nerv. Super. 17, 218 (1975).

327. Protiva M., Rajšner M., Trčka V., Vanček M., Němec J., Šedivý Z.: Collect. Czech. Chem. Commun. 40, 3904 (1975); CS 151,752, Chem. Abstr. 82, 140187 (1975).

328. Protiva M., Šedivý Z., Metyšová J.: Collect. Czech. Chem. Commun. 40, 2667 (1975); CS 171,058, Chem. Abstr. 89, 43505 (1978).

329. Rajšner M., Metyš J., Kakáč B., Protiva M.: Collect. Czech. Chem. Commun. 40, 2905 (1975); CS 146,689, Chem. Abstr. 79, 53283 (1973).

330. Rajšner M., Metyšová J., Němec J., Protiva M.: Collect. Czech. Chem. Commun. 40, 1218 (1975); CS 167,767, Chem. Abstr. 88, 50922 (1978).

331. Rajšner M., Metyšová J., Svátek E., Mikšík F., Protiva M.: Collect. Czech. Chem. Commun. 40, 719 (1975); CS 159,570, Chem. Abstr. 84, 180045 (1976); CS 163,536, Chem. Abstr. 86, 190002 (1977); CS 172,141, Chem. Abstr. 90, 22615 (1979).

332. Rajšner M., Svátek E., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 40, 1604 (1975); CS 168,232, Chem. Abstr. 88, 169994 (1978).

333. Šindelář K., Dlabač A., Kakáč B., Svátek E., Holubek J., Šedivý Z., Princová E., Protiva M.: Collect. Czech. Chem. Commun. 40, 2649 (1975); CS 170,702, Chem. Abstr. 89, 146927 (1978).

334. Šindelář K., Dlabač A., Metyšová J., Kakáč B., Holubek J., Svátek E., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 40, 1940 (1975); CS 161,394, Chem. Abstr. 88, 170188 (1978).

335. Šindelář K., Kopicová Z., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **40**, 3530 (1975).

336. Vejdělek Z., Dlabač A., Kakáč B., Protiva M.: *Collect. Czech. Chem. Commun.* **40**, 1623 (1975); CS 171,026, *Chem. Abstr.* **89**, 42921 (1978).

337. Vejdělek Z., Metyš J., Hradil F., Protiva M.: *Collect. Czech. Chem. Commun.* **40**, 1204 (1975); CS 163,566, *Chem. Abstr.* **86**, 171501 (1977); CS 164,487, DE 2,364,105, *Chem. Abstr.* **81**, 105567 (1974); CS 169,351, *Chem. Abstr.* **88**, 121244 (1978).

338. Vejdělek Z., Metyš J., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **40**, 3895 (1975).

1976

339. Červená I., Jílek J., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 3437 (1976); CS 159,044, *Chem. Abstr.* **85**, 5685 (1976); CS 183,323, *Chem. Abstr.* **94**, 139835 (1981); CS 183,325, *Chem. Abstr.* **94**, 192374 (1981).

340. Červená I., Metyšová J., Svátek E., Kakáč B., Holubek J., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 881 (1976); DE 2,600,182, *Chem. Abstr.* **86**, 5492 (1977); CS 172,508, *Chem. Abstr.* **90**, 104007 (1979); CS 173,972, *Chem. Abstr.* **90**, 137864 (1979).

341. Jílek J., Červená I., Kopicová Z., Šindelář K., Svátek E., Metyšová J., Dlabač A., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 443 (1976); CS 163,008, *Chem. Abstr.* **86**, 190001 (1977); CS 177,594, *Chem. Abstr.* **92**, 6553 (1980); CS 179,134, *Chem. Abstr.* **93**, 204688 (1980); CS 179,135, *Chem. Abstr.* **93**, 186407 (1980); CS 179,136, *Chem. Abstr.* **93**, 132512 (1980); CS 179,137, *Chem. Abstr.* **93**, 114571 (1980); CS 179,138, *Chem. Abstr.* **93**, 168302 (1980); CS 179,139, *Chem. Abstr.* **93**, 186408 (1980).

342. Kopicová Z., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 459 (1976); CS 179,661, *Chem. Abstr.* **93**, 204687 (1980).

343. Protiva M.: *Farm. Obzor* **45**, 103 (1976).

344. Protiva M.: *Vth Conf. Org. Chem., Smolenice, April 1976; Proc.*, p. 72.

345. Protiva M., Němec J., Šedivý Z.: *Collect. Czech. Chem. Commun.* **41**, 1035 (1976); CS 183,150, *Chem. Abstr.* **94**, 139833 (1981).

346. Smrž R., Jílek J., Kakáč B., Holubek J., Svátek E., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 3420 (1976); CS 176,990, *Chem. Abstr.* **91**, 107966 (1979); CS 177,747, *Chem. Abstr.* **93**, 168153 (1980); CS 178,349, *Chem. Abstr.* **93**, 186195 (1980); CS 179,268, *Chem. Abstr.* **93**, 150129 (1980).

347. Smrž R., Jílek J., Šindelář K., Kakáč B., Svátek E., Holubek J., Grimová J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 2771 (1976).

348. Šindelář K., Jílek J., Bártl V., Metyšová J., Kakáč B., Holubek J., Svátek E., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 910 (1976); CS 174,682, *Chem. Abstr.* **91**, 123867 (1979); CS 174,683, *Chem. Abstr.* **91**, 123754 (1979); CS 174,684, *Chem. Abstr.* **91**, 123755 (1979).

349. Šindelář K., Kakáč B., Holubek J., Svátek E., Ryska M., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 1396 (1976); CS 181,919, *Chem. Abstr.* **94**, 174913 (1981).

350. Tollenaere J.P., Moereels H., Protiva M.: *Eur. J. Med. Chem. - Chim. Ther.* **11**, 293 (1976).

351. Valenta V., Bártl V., Dlabač A., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 3607 (1976); CS 171,121, *Chem. Abstr.* **90**, 22613 (1979); CS 187,099, *Chem. Abstr.* **96**, 34882 (1982).

352. Valenta V., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 906 (1976); CS 183,126, *Chem. Abstr.* **94**, 192373 (1981).

353. Vejdělek Z., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **41**, 2020 (1976); CS 175,254, *Chem. Abstr.* **90**, 137340 (1979); CS 179,826, *Chem. Abstr.* **93**, 239088 (1980).

1977

354. Červená I., Šindelář K., Kopicová Z., Holubek J., Svátek E., Metyšová J., Hrubantová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 2001 (1977); CS 182,194, Chem. Abstr. 94, 121331 (1981); CS 185,059, Chem. Abstr. 95, 43172 (1981).

355. Červená I., Šindelář K., Metyšová J., Svátek E., Ryska M., Hrubantová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 1705 (1977); CS 175,114, Chem. Abstr. 91, 91674 (1979); CS 187,702, Chem. Abstr. 97, 198223 (1982).

356. Protiva M.: Drugs Future 2, 250 (1977).

357. Protiva M.: *VIIIth Int. Congr. Heterocycl. Chem., Tehran, July 1977*; Abstr. p. 8; Lect. Heterocycl. Chem. 4, S-1 (1978).

358. Protiva M., Valenta V., Trčka V., Hladovec J., Němec J.: Collect. Czech. Chem. Commun. 42, 3628 (1977); CS 135,596, FR 1,525,405, Chem. Abstr. 72, 21524 (1970).

359. Rajšner M., Svátek E., Metyšová J., Bartošová M., Mikšík F., Protiva M.: Collect. Czech. Chem. Commun. 42, 3079 (1977); CS 181,039, Chem. Abstr. 93, 132387 (1980); CS 182,042, Chem. Abstr. 94, 121104 (1981); CS 187,798, Chem. Abstr. 96, 69041 (1982); CS 187,799, Chem. Abstr. 96, 69042 (1982); CS 190,886, Chem. Abstr. 97, 216220 (1982).

360. Šindelář K., Holubek J., Dlabač A., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 2231 (1977); CS 187,768, Chem. Abstr. 96, 52335 (1982).

361. Šindelář K., Holubek J., Protiva M.: Collect. Czech. Chem. Commun. 42, 3605 (1977); CS 171,123, Chem. Abstr. 90, 6261 (1979); CS 176,673, Chem. Abstr. 91, 91672 (1979); CS 176,674, Chem. Abstr. 91, 91673 (1979); CS 177,593, Chem. Abstr. 91, 175393 (1979); CS 178,041, Chem. Abstr. 91, 91670 (1979); CS 178,042, Chem. Abstr. 91, 91671 (1979).

362. Šindelář K., Metyšová J., Holubek J., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 42, 1179 (1977); CS 175,115, Chem. Abstr. 91, 91675 (1979).

363. Valenta V., Protiva M.: Collect. Czech. Chem. Commun. 42, 2240 (1977).

364. Vejdělek Z., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 1992 (1977); CS 189,200, Chem. Abstr. 98, 126157 (1983).

365. Vejdělek Z., Holubek J., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 3094 (1977); CS 189,199, Chem. Abstr. 96, 142430 (1982).

366. Vejdělek Z., Kakáč B., Holubek J., Svátek E., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 42, 1200 (1977); CS 179,825, Chem. Abstr. 93, 132386 (1980).

1978

367. Bártl V., Holubek J., Němec J., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 43, 2427 (1978); CS 200,717, Chem. Abstr. 98, 160606 (1983); CS 202,234, Chem. Abstr. 98, 53717 (1983).

368. Jílek J., Holubek J., Svátek E., Bartošová M., Metyšová J., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 43, 3092 (1978); CS 183,324, Chem. Abstr. 94, 192174 (1981); CS 193,370, Chem. Abstr. 96, 199732 (1982).

369. Jílek J., Pomykáček J., Metyšová J., Bartošová M., Protiva M.: Collect. Czech. Chem. Commun. 43, 1747 (1978); CS 193,923, Chem. Abstr. 97, 6319 (1982).

370. Kovář J., Skurský L., Protiva M.: Collect. Czech. Chem. Commun. 43, 2068 (1978).

371. Protiva M.: *XXth Psychopharmacol. Conf., Jeseník, January 1978*; Cesk. Psychiat. 74, 337 (1978).

372. Protiva M., Červená I., Rajšner M., Metyšová J., Hrubantová M.: Collect. Czech. Chem. Commun. 43, 2656 (1978); CS 202,229, Chem. Abstr. 98, 125879 (1983).

373. Protiva M., Metyšová J.: *XXth Psychopharmacol. Conf., Jescník, January 1978; Activ. Nerv. Super.* 20, 270 (1978); *XIth Congr. Coll. Int. Neuro-Psychopharmacol., Vienna, July 1978; Abstr.* p. 372.

374. Rajšner M., Kopicová Z., Holubek J., Svátek E., Metyš J., Bartošová M., Mikšík F., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 1760 (1978); CS 169,331, *Chem. Abstr.* 88, 120770 (1978); CS 171,999, *Chem. Abstr.* 90, 22537 (1979); CS 176,805, *Chem. Abstr.* 90, 203697 (1979); CS 189,164, *Chem. Abstr.* 96, 142717 (1982); CS 191,087, *Chem. Abstr.* 97, 6320 (1982); CS 191,088, *Chem. Abstr.* 97, 6321 (1982); CS 192,861, *Chem. Abstr.* 101, 38369 (1984); CS 193,303, *Chem. Abstr.* 96, 199731 (1982).

375. Rajšner M., Mikšík F., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 1276 (1978); CS 171,122, *Chem. Abstr.* 90, 22614 (1979); CS 179,832, *Chem. Abstr.* 93, 167931 (1980); CS 179,833, *Chem. Abstr.* 93, 149995 (1980); CS 190,996, *Chem. Abstr.* 96, 104281 (1982).

376. Šindelář K., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 309 (1978); CS 179,793, *Chem. Abstr.* 93, 168316 (1980).

377. Šindelář K., Jílek J., Pomykáček J., Šedivý Z., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 471 (1978); CS 152,645, *Chem. Abstr.* 82, 73028 (1975).

378. Vejdělek Z., Bartošová M., Čapek A., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 970 (1978); CS 203,851, *Chem. Abstr.* 100, 209434 (1984).

379. Vejdělek Z., Bartošová M., Ryska M., Protiva M.: *Collect. Czech. Chem. Commun.* 43, 1732 (1978); CS 188,018, *Chem. Abstr.* 97, 109720 (1982).

1979

380. Červená I., Metyšová J., Bártl V., Protiva M.: *Collect. Czech. Chem. Commun.* 44, 2139 (1979); *VIth Int. Symp. Med. Chem., Brighton (U.K.), Sept. 1978; Abstr.* P61.

381. Jílek J., Holubek J., Svátek E., Ryska M., Pomykáček J., Protiva M.: *Collect. Czech. Chem. Commun.* 44, 2124 (1979).

382. Protiva M.: *Pharmazie* 34, 274 (1979).

383. Protiva M., Šindelář K., Metyšová J.: *IVth Int. Symp. Phenothiazines Rel. Drugs, Zurich, September 1979; Abstr. No. 6; Proc. in: Developments in Neuroscience* (E. Usdin, H. Eckert and I. Forrest, Eds), Vol.7., p. 25. Elsevier, Amsterdam 1980.

384. Protiva M., Šindelář K., Šedivý Z., Metyšová J.: *Collect. Czech. Chem. Commun.* 44, 2108 (1979); CS 191,777, *Chem. Abstr.* 97, 91949 (1982); CS 191,778, *Chem. Abstr.* 97, 91950 (1982); CS 191,793, *Chem. Abstr.* 97, 91951 (1982); CS 193,369, *Chem. Abstr.* 96, 217877 (1982).

385. Protiva M., Šindelář K., Šedivý Z., Pomykáček J.: *Collect. Czech. Chem. Commun.* 44, 2987 (1979); CS 190,653, *Chem. Abstr.* 96, 217879 (1982); CS 191,777, *Chem. Abstr.* 97, 91949 (1982).

386. Rajšner M., Bártl V., Šindelář K., Svátek E., Holubek J., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* 44, 2536 (1979); CS 203,331, *Chem. Abstr.* 98, 34516 (1983); CS 202,332, *Chem. Abstr.* 97, 216039 (1982); CS 202,333, *Chem. Abstr.* 97, 216040 (1982); CS 202,334, *Chem. Abstr.* 98, 89199 (1983); CS 202,335, *Chem. Abstr.* 98, 89197 (1983); CS 202,336, *Chem. Abstr.* 98, 89198 (1983).

387. Rajšner M., Mikšík F., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* 44, 2997 (1979); CS 200,271, *Chem. Abstr.* 98, 160689 (1983).

388. Seeman P., Westman K., Protiva M., Jílek J., Jain P.C., Saxena A.K., Anand N., Humber L., Philipp A.: *Eur. J. Pharmacol.* 56, 247 (1979).

389. Šindelář K., Holubek J., Svátek E., Ryska M., Metyšová J., Šedivý Z., Protiva M.: *Collect. Czech. Chem. Commun.* 44, 3617 (1979); CS 197,191, *Chem. Abstr.* 100, 51605 (1984).

390. Valenta V., Jílek J., Pomykáček J., Dlabač A., Valchář M., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **44**, 2677 (1979); CS 197,190, *Chem. Abstr.* **100**, 139127 (1984); CS 202,330, *Chem. Abstr.* **98**, 4393 (1983).

391. Valenta V., Kvíš F., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **44**, 2689 (1979); CS 200,861, *Chem. Abstr.* **99**, 22501 (1983); CS 202,337, *Chem. Abstr.* **98**, 71961 (1983); CS 202,338, *Chem. Abstr.* **98**, 125911 (1983).

392. Valenta V., Svátek E., Dlabač A., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **44**, 3008 (1979); CS 183,892, *Chem. Abstr.* **95**, 132698 (1981); CS 188,561, *Chem. Abstr.* **96**, 69035 (1982); CS 200,277, *Chem. Abstr.* **98**, 179405 (1983); CS 202,457, *Chem. Abstr.* **101**, 38478 (1984).

393. Vejdělek Z., Rajšner M., Svátek E., Holubek J., Protiva M.: *Collect. Czech. Chem. Commun.* **44**, 3604 (1979).

1980

394. Bártl V., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 3182 (1980); CS 210,195, *Chem. Abstr.* **101**, 7195 (1984).

395. Červená I., Hrubantová M., Svátek E., Holubek J., Ryska M., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 2688 (1980); CS 193,368, *Chem. Abstr.* **97**, 38953 (1982).

396. Červená I., Metyšová J., Protiva M.: *Eur. J. Med. Chem. - Chim. Ther.* **15**, 330 (1980).

397. Jílek J., Pomykáček J., Dlabač A., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 504 (1980); CS 187,715, *Chem. Abstr.* **97**, 127660 (1982); CS 201,998, *Chem. Abstr.* **98**, 215622 (1983); CS 201,999, *Chem. Abstr.* **98**, 215623 (1983); CS 202,000, *Chem. Abstr.* **98**, 215620 (1983).

398. Protiva M.: *Pokroky ve farmacii*, Vol. 2, p. 7. Avicenum, Prague 1980.

399. Šindelář K., Holubek J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 491 (1980); CS 187,769, *Chem. Abstr.* **96**, 69032 (1982).

400. Šindelář K., Jílek J., Körbl J., Jančík F., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 3166 (1980); CS 211,103, *Chem. Abstr.* **102**, 6207 (1985); CS 211,104, *Chem. Abstr.* **102**, 6206 (1985).

401. Šindelář K., Svátek E., Holubek J., Ryska M., Metyšová J., Šedivý Z., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 1086 (1980); CS 208,442, *Chem. Abstr.* **101**, 55116 (1984).

402. Valenta V., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 517 (1980); CS 204,709, *Chem. Abstr.* **98**, 89202 (1983); CS 204,710, *Chem. Abstr.* **98**, 89201 (1983).

403. Valenta V., Dlabač A., Bartošová M., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 529 (1980); *XXVIIth Pharmacol. Days, Brno, September 1976*; *Cesk. Fysiol.* **26**, 214 (1977); CS 187,714, *Chem. Abstr.* **97**, 198224 (1982); CS 187,716, *Chem. Abstr.* **97**, 127661 (1982); CS 187,717, *Chem. Abstr.* **97**, 198225 (1982).

404. Vejdělek Z., Rajšner M., Dlabač A., Ryska M., Holubek J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **45**, 3593 (1980); *VIIth Symp. Heterocycl. Comp., Brno, July 1978*; *Abstr.* p. 91; *Heterocycles* **9**, 1497 (1978); CS 208,510, *Chem. Abstr.* **101**, 38487 (1984); CS 209,634, *Chem. Abstr.* **99**, 105137 (1983).

1981

405. Bártl V., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 141 (1981).

406. Červená I., Hrubantová M., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 1188 (1981); CS 213,038, *Chem. Abstr.* **101**, 72455 (1984).

407. Jílek J., Pomykáček J., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 1607 (1981); CS 211,326, *Chem. Abstr.* **101**, 151885 (1984).

408. Jílek J., Pomykáček J., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 2729 (1981); CS 215,495, *Chem. Abstr.* **105**, 191125 (1986).

409. Polívka Z., Holubek J., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 2222 (1981); CS 217,949, *Chem. Abstr.* **103**, 87907 (1985).

410. Protiva M., Šedivý Z., Pomykáček J., Bárti V., Holubek J., Svátek E.: *Collect. Czech. Chem. Commun.* **46**, 2245 (1981); CS 213,292, *Chem. Abstr.* **101**, 90976 (1984).

411. Protiva M., Šedivý Z., Pomykáček J., Svátek E., Holubek J.: *Collect. Czech. Chem. Commun.* **46**, 1199 (1981); CS 211,324, *Chem. Abstr.* **101**, 230560 (1984).

412. Protiva M., Šindelář K., Metyšová J., Holubek J., Ryska M., Svátek E., Šedivý Z., Pomykáček J.: *Collect. Czech. Chem. Commun.* **46**, 1788 (1981); CS 191,795, *Chem. Abstr.* **97**, 127283 (1982); CS 194,005, *Chem. Abstr.* **97**, 127520 (1982).

413. Protiva M., Šindelář K., Šedivý Z., Holubek J., Bartošová M.: *Collect. Czech. Chem. Commun.* **46**, 1808 (1981).

414. Rajšner M., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 1530 (1981); CS 204,530, *Chem. Abstr.* **100**, 6349 (1984).

415. Šindelář K., Holubek J., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 597 (1981); CS 211,322, *Chem. Abstr.* **101**, 170865 (1984).

416. Šindelář K., Ryska M., Holubek J., Svátek E., Metyšová J., Protiva J., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 118 (1981); *VIIth Symp. Chem. Heterocycl. Comp., Brno, July 1978*; Abstr. p. 93; *Heterocycles* **9**, 1498 (1978); CS 191,792, *Chem. Abstr.* **97**, 92127 (1982); CS 191,794, *Chem. Abstr.* **97**, 91952 (1982); CS 191,796, *Chem. Abstr.* **97**, 91955 (1982).

417. Valenta V., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 1280 (1981); CS 211,327, *Chem. Abstr.* **101**, 151572 (1984).

418. Valenta V., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 781 (1981); CS 211,323, *Chem. Abstr.* **101**, 170866 (1984); CS 212,115, *Chem. Abstr.* **101**, 211179 (1984).

419. Vejdělek Z., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 1800 (1981); CS 217,262, *Chem. Abstr.* **102**, 61959 (1985).

420. Vejdělek Z., Holubek J., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 2234 (1981); CS 217,945, *Chem. Abstr.* **104**, 88244 (1986); CS 217,946, *Chem. Abstr.* **103**, 104603 (1985); CS 217,947, *Chem. Abstr.* **104**, 88245 (1986).

421. Vejdělek Z., Svátek E., Holubek J., Metyš J., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **46**, 148 (1981); CS 208,509, *Chem. Abstr.* **101**, 72732 (1984); CS 210,532, *Chem. Abstr.* **101**, 7055 (1984).

1982

422. Jílek J., Pomykáček J., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 1382 (1982).

423. Metyšová J., Protiva M.: *XXIVth Psychopharmacol. Conf., Jeseník, January 1982*; *Activ. Nerv. Super.* **24**, 233 (1982).

424. Protiva M., Kopcová Z., Grimová J.: *Collect. Czech. Chem. Commun.* **47**, 636 (1982); CS 217,261, *Chem. Abstr.* **102**, 6548 (1985).

425. Protiva M., Šedivý Z., Holubek J., Svátek E., Metyšová J., Bartošová M.: *Collect. Czech. Chem. Commun.* **47**, 3134 (1982); CS 224,810, *Chem. Abstr.* **103**, 71191 (1985); CS 224,812, *Chem. Abstr.* **103**, 71192 (1985); CS 229,076, *Chem. Abstr.* **105**, 226398 (1986).

426. Protiva M., Šindelář K., Metyšová J., Dlabač A.: *XXIVth Psychopharmacol. Conf., Jeseník, January 1982*; *Activ. Nerv. Super.* **24**, 217 (1982).

427. Protiva M., Šindelář K., Valenta V., Holubek J., Svátek E., Ryska M., Schlanger J., Urban J., Hrubantová M.: *Collect. Czech. Chem. Commun.* **47**, 3094 (1982); CS 220,189, *Chem. Abstr.* **105**, 190981 (1986); CS 223,428, *Chem. Abstr.* **106**, 4903 (1987); CS 223,429, *Chem. Abstr.* **105**, 208779 (1986); CS 223,430, *Chem. Abstr.* **105**, 226396 (1986).

428. Rajšner M., Svátek E., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 65 (1982).

429. Šindelář K., Holubek J., Ryska M., Dlabač A., Metyšová J., Svátek E., Hrubantová M., Protiva J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 967 (1982); *VIIth Symp. Chem. Heterocycl. Comp., Brno, July 1978; Abstr.* p. 95; *Heterocycles* **9**, 1498 (1978); CS 202,238, *Chem. Abstr.* **98**, 72149 (1983); CS 202,241, *Chem. Abstr.* **98**, 143472 (1983); CS 217,879, *Chem. Abstr.* **103**, 54105 (1985); CS 217,880, *Chem. Abstr.* **103**, 37508 (1985); CS 217,881, *Chem. Abstr.* **103**, 87917 (1985); CS 217,882, *Chem. Abstr.* **103**, 87916 (1985).

430. Šindelář K., Holubek J., Ryska M., Svátek E., Dlabač A., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 72 (1982); CS 202,239, *Chem. Abstr.* **98**, 72151 (1983); CS 202,240, *Chem. Abstr.* **98**, 72150 (1983); CS 219,786, *Chem. Abstr.* **106**, 213987 (1987); **111**, 194804 (1989).

431. Šindelář K., Holubek J., Svátek E., Ryska M., Dlabač A., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 3114 (1982); CS 219,003, *Chem. Abstr.* **107**, 96744 (1987).

432. Šindelář K., Holubek J., Svátek E., Ryska M., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 1367 (1982); CS 219,002, *Chem. Abstr.* **105**, 191143 (1986).

433. Šindelář K., Metyšová J., Holubek J., Svátek E., Protiva J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 3077 (1982); BE 892,476, *Chem. Abstr.* **98**, 16736 (1983).

434. Valenta V., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 984 (1982); CS 217,948, *Chem. Abstr.* **103**, 71205 (1985).

435. Vejdělek Z., Holubek J., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **47**, 3297 (1982); CS 223,447, *Chem. Abstr.* **105**, 208882 (1986); CS 223,538, *Chem. Abstr.* **102**, 96074 (1985).

1983

436. Bártl V., Holubek J., Svátek E., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1173 (1983); CS 229,886, *Chem. Abstr.* **106**, 5078 (1987).

437. Jílek J., Pomykáček J., Prošek Z., Holubek J., Svátek E., Metyšová J., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 906 (1983); CS 224,987, *Chem. Abstr.* **103**, 71337 (1985); CS 224,988, *Chem. Abstr.* **103**, 37498 (1985); CS 224,990, *Chem. Abstr.* **103**, 54101 (1985); CS 227,530, *Chem. Abstr.* **105**, 226642 (1986); CS 227,531, *Chem. Abstr.* **104**, 88264 (1986); CS 227,532, *Chem. Abstr.* **104**, 88316 (1986); CS 228,873, *Chem. Abstr.* **106**, 32874 (1987).

438. Polívka Z., Holubek J., Metyš J., Šedivý Z., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 3433 (1983); CS 229,100, *Chem. Abstr.* **105**, 208941 (1986).

439. Polívka Z., Holubek J., Svátek E., Dlabač A., Půček D., Šedivý Z., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1465 (1983); CS 225,894, *Chem. Abstr.* **105**, 191144 (1986).

440. Polívka Z., Rajšner M., Metyš J., Holubek J., Svátek E., Ryska M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 623 (1983); CS 193,215, *JP Kokai 78 119,894, Chem. Abstr.* **90**, 152150 (1979); CS 224,245, *Chem. Abstr.* **102**, 45917 (1985); CS 224,246, *Chem. Abstr.* **102**, 45920 (1985); CS 224,247, *Chem. Abstr.* **102**, 45918 (1985); CS 224,248, *Chem. Abstr.* **102**, 45919 (1985); CS 224,249, *Chem. Abstr.* **102**, 62074 (1985); CS 224,978, *Chem. Abstr.* **103**, 54055 (1985); BE 897,185, CS 231,083, *Chem. Abstr.* **100**, 139084 (1984).

441. Polívka Z., Ryska M., Holubek J., Svátek E., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 2395 (1983); CS 229,098, *Chem. Abstr.* **105**, 208942 (1986); CS 229,099, *Chem. Abstr.* **105**, 226668 (1986).

442. Polívka Z., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 2970 (1983); CS 230,245, *Chem. Abstr.* **106**, 4997 (1987).

443. Protiva M.: *Drugs Future* **8**, 334 (1983); *Ann. Drug Data Rept* **5**, 151 (1983).

444. Rajšner M., Metyš J., Holubek J., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 163 (1983); CS 224,924, *Chem. Abstr.* **103**, 37380 (1985); CS 224,925, CS 224,926, *Chem. Abstr.* **103**, 22481 (1985).

445. Šindelář K., Holubek J., Ryska M., Svátek E., Urban J., Grimová J., Červená I., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1187 (1983); CS 225,568, *Chem. Abstr.* **105**, 190984 (1986); CS 225,569, *Chem. Abstr.* **105**, 190985 (1986); CS 225,570, *Chem. Abstr.* **105**, 190982 (1986); CS 225,571, *Chem. Abstr.* **105**, 190983 (1986).

446. Šindelář K., Holubek J., Ryska M., Svátek E., Urban J., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1898 (1983); CS 219,077, *Chem. Abstr.* **104**, 19527 (1986).

447. Šindelář K., Metyšová J., Holubek J., Svátek E., Ryska M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 144 (1983); CS 191,811, *Chem. Abstr.* **97**, 162850 (1982); CS 192,382, *Chem. Abstr.* **96**, 68849 (1982); CS 194,006, *Chem. Abstr.* **97**, 109888 (1982).

448. Valenta V., Holubek J., Svátek E., Dlabač A., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1447 (1983); CS 225,598, *Chem. Abstr.* **105**, 190968 (1986); CS 225,599, *Chem. Abstr.* **105**, 43136 (1986); CS 226,465, *Chem. Abstr.* **104**, 224694 (1986).

449. Valenta V., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1089 (1983); CS 226,458, *Chem. Abstr.* **104**, 224718 (1986); CS 226,459, *Chem. Abstr.* **105**, 191127 (1986).

450. Vejdělek Z., Bartošová M., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 156 (1983); CS 223,496, *Chem. Abstr.* **102**, 61915 (1985).

451. Vejdělek Z., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 123 (1983); CS 223,449, *Chem. Abstr.* **106**, 5094 (1987); CS 225,394, *Chem. Abstr.* **105**, 208944 (1986); CS 226,281, *Chem. Abstr.* **106**, 213985 (1987).

452. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 642 (1983); CS 224,989, *Chem. Abstr.* **102**, 220552 (1985).

453. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 1477 (1983); CS 229,097, *Chem. Abstr.* **105**, 191142 (1986); CS 232,783, *Chem. Abstr.* **106**, 84663 (1987).

454. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **48**, 2977 (1983); CS 229,885, *Chem. Abstr.* **106**, 33115 (1987).

1984

455. Bártl V., Dlabač A., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **49**, 1800 (1984); CS 235,172, *Chem. Abstr.* **108**, 186598 (1988); CS 235,173, *Chem. Abstr.* **109**, 37748 (1988); CS 235,174, *Chem. Abstr.* **108**, 5869 (1988).

456. Bártl V., Jílek J., Metyšová J., Valchář M., Dlabač A., Wildt S., Protiva M.: *Collect. Czech. Chem. Commun.* **49**, 1810 (1984).

457. Bártl V., Kmoníček V., Šedivý Z., Svátek E., Protiva J., Protiva M.: *Collect. Czech. Chem. Commun.* **49**, 2295 (1984); CS 235,148, *Chem. Abstr.* **106**, 213764 (1987); CS 236,384, *Chem. Abstr.* **109**, 190250 (1988).

458. Bártl V., Svátek E., Dlabač A., Wildt S., Protiva M.: *Collect. Czech. Chem. Commun.* **49**, 1816 (1984); CS 236,449, *Chem. Abstr.* **106**, 138470 (1987); CS 236,549, *Chem. Abstr.* **107**, 134327 (1987); CS 236,550, *Chem. Abstr.* **107**, 134326 (1987).

459. Bártl V., Šindelář K., Valenta V., Holubek J., Svátek E., Schlanger J., Dlabač A., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **49**, 2520 (1984); CS 236,340, *Chem. Abstr.* **110**, 57689 (1989); CS

237,483, Chem. Abstr. 108, 167331 (1988); CS 237,484, Chem. Abstr. 108, 112499 (1988); CS 237,487, Chem. Abstr. 108, 112435 (1988).

460. Červená I., Protiva M.: Collect. Czech. Chem. Commun. 49, 1009 (1984); CS 235,613, Chem. Abstr. 107, 134325 (1987); CS 236,146, Chem. Abstr. 109, 129049 (1988); CS 236,147, Chem. Abstr. 110, 114864 (1989); CS 236,148, Chem. Abstr. 109, 129048 (1988).

461. Jílek J., Pomykáček J., Holubek J., Svátek E., Ryska M., Protiva J., Protiva M.: Collect. Czech. Chem. Commun. 49, 603 (1984).

462. Jílek J., Rajšner M., Metyšová J., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 49, 2638 (1984); CS 191,810, Chem. Abstr. 97, 182232 (1982); CS 192,922, Chem. Abstr. 99, 22339 (1983); CS 192,923, Chem. Abstr. 98, 126158 (1983); CS 194,000, Chem. Abstr. 98, 215495 (1983).

463. Kmoníček V., Bártl V., Protiva M.: Collect. Czech. Chem. Commun. 49, 1722 (1984); CS 236,339, Chem. Abstr. 111, 133991 (1989).

464. Polívka Z., Holubek J., Svátek E., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 49, 621 (1984); CS 233,436, Chem. Abstr. 106, 84665 (1987); CS 233,437, Chem. Abstr. 106, 102334 (1987); CS 233,438, Chem. Abstr. 106, 84389 (1987); CS 233,439, Chem. Abstr. 106, 84666 (1987).

465. Polívka Z., Jílek J., Holubek J., Svátek E., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 49, 86 (1984); CS 236,619, Chem. Abstr. 109, 6546 (1988).

466. Protiva M.: *XXVIIth Psychopharmacol. Conf., Jeseník, January 1984*; Cesk. Psychiat. 80, 381 (1984).

467. Punčochář L., Mayer J., Protiva M.: CS 232,340, Chem. Abstr. 106, 32826 (1987).

468. Punčochář L., Mayer J., Protiva M.: CS 232,509, Chem. Abstr. 106, 33297 (1987).

469. Šindelář K., Holubek J., Ryska M., Dlabač A., Valchář M., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 49, 2531 (1984); *VIIth Int. Symp. Med. Chem., Uppsala, August 1984*; Abstr. p. 87; CS 237,485, Chem. Abstr. 109, 37841 (1988); CS 237,486, Chem. Abstr. 109, 93080 (1988).

470. Šindelář K., Holubek J., Ryska M., Svátek E., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 49, 1021 (1984); CS 236,144, Chem. Abstr. 109, 128984 (1988); CS 236,146, Chem. Abstr. 110, 75467 (1989).

471. Urban J., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 49, 992 (1984).

472. Valenta V., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 49, 1002 (1984); CS 232,348, Chem. Abstr. 106, 4650 (1987); CS 232,349, Chem. Abstr. 106, 4651 (1987); CS 236,149, Chem. Abstr. 110, 114865 (1989).

473. Vejdělek Z., Metyš J., Holubek J., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 49, 2649 (1984); CS 241,903, Chem. Abstr. 110, 23724 (1989).

1985

474. Breyer-Pfaff U., Wiest E., Prox A., Wachsmuth H., Protiva M., Šindelář K., Friebolin H., Krauss D., Kunzelmann P.: Drug Metabol. Dispos. 13, 479 (1985).

475. Jílek J., Holubek J., Svátek E., Metyšová J., Pomykáček J., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 50, 2179 (1985); CS 239,095, Chem. Abstr. 110, 75562 (1989).

476. Jílek J., Holubek J., Svátek E., Schläger J., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 50, 519 (1985).

477. Polívka Z., Holubek J., Svátek E., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 50, 1078 (1985); CS 239,439, Chem. Abstr. 109, 110260 (1988).

478. Protiva M.: Respharma 1985, Dec., 41.

479. Protiva M., Šedivý Z., Holubek J., Svátek E., Němec J.: Collect. Czech. Chem. Commun. 50, 1888 (1985); CS 246,337, Chem. Abstr. 109, 210915 (1988); CS 246,338, Chem. Abstr. 110, 75308 (1989).

480. Šindelář K., Holubek J., Schlanger J., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 50, 503 (1985); *VIIIth Symp. Chem. Heterocycl. Comp., Prague, September 1984*; Nucl. Acids (Symp. Ser.) No. 14, 201 (1984); CS 239,436, Chem. Abstr. 108, 112511 (1988).

481. Šindelář K., Holubek J., Svátek E., Ryska M., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 50, 1484 (1985); CS 246,394, Chem. Abstr. 110, 75578 (1989).

482. Šindelář K., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 50, 1089 (1985); CS 240,697, Chem. Abstr. 108, 221595 (1988); CS 240,698, Chem. Abstr. 109, 92794 (1988).

483. Valenta V., Prošek Z., Metyšová J., Valchář M., Dlabač A., Protiva M.: Collect. Czech. Chem. Commun. 50, 1070 (1985); CS 240,041, Chem. Abstr. 110, 75563 (1989); CS 240,384, Chem. Abstr. 110, 75560 (1989).

484. Valenta V., Protiva M.: Collect. Czech. Chem. Commun. 50, 510 (1985); CS 239,440, Chem. Abstr. 109, 129047 (1988).

485. Vejdělek Z., Bártl V., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 50, 1498 (1985); CS 243,593, Chem. Abstr. 110, 75528 (1989); CS 243,594, Chem. Abstr. 110, 57687 (1989).

486. Vejdělek Z., Polívka Z., Protiva M.: Collect. Czech. Chem. Commun. 50, 1064 (1985).

1986

487. Červená I., Holubek J., Svátek E., Metyšová J., Valchář M., Dlabač A., Wildt S., Protiva M.: Collect. Czech. Chem. Commun. 51, 141 (1986); CS 245,898, Chem. Abstr. 110, 57686 (1989); CS 245,899, Chem. Abstr. 110, 114866 (1989); CS 246,000, Chem. Abstr. 110, 57688 (1989).

488. Jílek J., Valchář M., Pomykáček J., Dlabač A., Protiva M.: Collect. Czech. Chem. Commun. 51, 1503 (1986); CS 250,581, Chem. Abstr. 110, 95268 (1989).

489. Kmoníček V., Svátek E., Holubek J., Protiva M.: Collect. Czech. Chem. Commun. 51, 937 (1986); CS 247,595, Chem. Abstr. 111, 39190 (1989).

490. Polívka Z., Metyš J., Jílek J., Protiva M.: Collect. Czech. Chem. Commun. 51, 2034 (1986); *XXVIIIth Psychopharmacol. Conf., Jeseník, January 1986*; Activ. Nerv. Super. 28, 303 (1986); *IXth Int. Symp. Med. Chem., Berlin, September 1986*; Abstr. p. 207; CS 249,499, Chem. Abstr. 111, 97112 (1989); CS 249,500, Chem. Abstr. 110, 38973 (1989).

491. Protiva M.: *Pharmazie* 41, 225 (1986).

492. Protiva M., Dlabač A., Valchář M., Wildt S., Červená I., Šedivý Z.: Collect. Czech. Chem. Commun. 51, 156 (1986); CS 245,900, Chem. Abstr. 110, 23913 (1989).

493. Protiva M., Jílek J., Červená I., Pomykáček J., Bártl V., L Valchář M., Metyšová J., Holubek J., Svátek E.: Collect. Czech. Chem. Commun. 51, 2598 (1986); *XXVIIIth Psychopharmacol. Conf., Jeseník, January 1986*; Activ. Nerv. Super. 28, 295 (1986); *IXth Int. Symp. Med. Chem., Berlin, September 1986*; Abstr. p. 286; CS 243,587, Chem. Abstr. 110, 75055 (1989); CS 243,588, Chem. Abstr. 110, 57677 (1989); CS 243,589, Chem. Abstr. 111, 77637 (1989); CS 244,298, Chem. Abstr. 110, 7841 (1989); CS 245,198, Chem. Abstr. 109, 128556 (1988); CS 245,445, Chem. Abstr. 110, 212334 (1989); CS 249,455, EP 189,310, Chem. Abstr. 105, 226399 (1986).

494. Protiva M., Jílek J., Rajšner M., Pomykáček J., Ryska M., Holubek J., Svátek E., Metyšová J.: Collect. Czech. Chem. Commun. 51, 698 (1986); BE 872,496, CS 196,893, Chem. Abstr. 91, 74652 (1979); CS 247,046, Chem. Abstr. 110, 7838 (1989); CS 246,346, Chem. Abstr. 109, 170051 (1988); CS 246,347, Chem. Abstr. 109, 230547 (1988); CS 246,348, Chem. Abstr. 110, 7855 (1989); CS 246,349, Chem. Abstr. 110, 75056 (1989); CS 246,350, Chem. Abstr. 110, 23541 (1989); CS 247,047, Chem. Abstr. 110, 7837 (1989); CS 247,048, Chem. Abstr. 110, 38729 (1989); CS 247,049, Chem. Abstr. 110, 7856 (1989); CS 247,050, Chem. Abstr. 110, 7857 (1989); CS 247,589, Chem. Abstr. 110, 95271 (1989); CS 247,590, Chem. Abstr. 110, 95270 (1989); CS 247,591, Chem. Abstr. 110, 114868 (1989).

495. Šindelář K., Holubek J., Ryska M., Koruna I., Protiva M.: *Collect. Czech. Chem. Commun.* **51**, 2848 (1986); CS 252,325, *Chem. Abstr.* **110**, 95027 (1989).

496. Vejdělek Z., Němec J., Protiva M.: *Collect. Czech. Chem. Commun.* **51**, 1487 (1986); CS 248,947, *Chem. Abstr.* **111**, 194274 (1989).

497. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **51**, 1494 (1986); CS 250,580, *Chem. Abstr.* **110**, 135262 (1989).

1987

498. Červená I., Holubek J., Svátek E., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2564 (1987); CS 258,799, *Chem. Abstr.* **112**, 157835 (1990).

499. Kmoníček V., Holubek J., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 793 (1987); CS 252,336, *Chem. Abstr.* **110**, 95296 (1989); CS 252,337, *Chem. Abstr.* **110**, 212368 (1989); CS 252,338, *Chem. Abstr.* **110**, 153915 (1989); CS 252,339, *Chem. Abstr.* **110**, 95267 (1989).

500. Polívka Z., Holubek J., Buděšínský M., Matoušová O., Svátek E., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2758 (1987); CS 259,645, *Chem. Abstr.* **112**, 7396 (1990); CS 259,646, *Chem. Abstr.* **112**, 20915 (1990); CS 260,087, *Chem. Abstr.* **112**, 55927 (1990).

501. Polívka Z., Lichá I., Taufmann P., Svátek E., Holubek J., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 1566 (1987); CS 254,740, *Chem. Abstr.* **111**, 115063 (1989); CS 254,741, *Chem. Abstr.* **111**, 115062 (1989); CS 254,742, *Chem. Abstr.* **111**, 134015 (1989); CS 254,743, *Chem. Abstr.* **111**, 153659 (1989).

502. Protiva M.: *Drugs Future* **12**, 636 (1987).

503. Protiva M., Jílek J., Rajšner M., Šindelář K., Bártl V., Ryska M., Koruna I., Holubek J., Svátek E., Metyšová J., Dlabač A., Pomykáček J., Mikšík F.: *Collect. Czech. Chem. Commun.* **52**, 1811 (1987); CS 255,050, *Chem. Abstr.* **112**, 7179 (1990); CS 256,228, *Chem. Abstr.* **111**, 232858 (1989).

504. Šindelář K., Buděšínský M., Vaněk T., Holubek J., Svátek E., Matoušová O., Rees C.W., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2281 (1987); CS 256,238, *Chem. Abstr.* **111**, 232604 (1989); CS 257,340, *Chem. Abstr.* **112**, 35701 (1990).

505. Urban J., Svátek E., Ryska M., Metyš J., Wildt S., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 1340 (1987), CS 255,617, *Chem. Abstr.* **111**, 194597 (1989).

506. Valenta V., Holubek J., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 1062 (1987); CS 254,730, *Chem. Abstr.* **112**, 7509 (1990).

507. Valenta V., Holubek J., Svátek E., Miller V., Vlková M., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2534 (1987); CS 258,279, *Chem. Abstr.* **112**, 98362 (1990); CS 258,293, *Chem. Abstr.* **112**, 76927 (1990); CS 258,294, *Chem. Abstr.* **112**, 98361 (1990); CS 258,295, *Chem. Abstr.* **112**, 118632 (1990); CS 258,296, *Chem. Abstr.* **112**, 20893 (1990); CS 258,297, *Chem. Abstr.* **112**, 55580 (1990).

508. Valenta V., Holubek J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 3013 (1987); CS 260,089, *Chem. Abstr.* **112**, 158270 (1990); CS 260,090, *Chem. Abstr.* **112**, 76628 (1990).

509. Valenta V., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2095 (1987); CS 257,341, *Chem. Abstr.* **111**, 194789 (1989); CS 257,727, *Chem. Abstr.* **111**, 194578 (1989).

510. Vejdělek Z., Holubek J., Ryska M., Koruna I., Svátek E., Buděšínský M., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 2545 (1987); CS 224,238, *Chem. Abstr.* **102**, 45623 (1985); CS 227,485, *Chem. Abstr.* **105**, 208943 (1986); CS 237,738, *Chem. Abstr.* **109**, 22983 (1988).

511. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 1073 (1987); CS 254,621, *Chem. Abstr.* **111**, 153839 (1989).

512. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **52**, 1834 (1987); CS 257,316, *Chem. Abstr.* **111**, 213503 (1989).

1988

513. Červená I., Holubek J., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 53, 1307 (1988); CS 262,293, Chem. Abstr. 112, 216699 (1990).

514. Hulinská H., Polívka Z., Jílek J., Šindelář K., Holubek J., Svátek E., Matoušová O., Buděšínský M., Frycová H., Protiva M.: Collect. Czech. Chem. Commun. 53, 1820 (1988); CS 263,975, Chem. Abstr. 113, 59227 (1990); CS 264,000, Chem. Abstr. 113, 59226 (1990).

515. Hulinská H., Taufmann P., Frycová H., Protiva M.: Collect. Czech. Chem. Commun. 53, 373 (1988); CS 261,296, Chem. Abstr. 112, 198356 (1990); CS 262,100, Chem. Abstr. 112, 77229 (1990).

516. Jílek J., Holubek J., Svátek E., Metyš J., Frycová H., Pomykáček J., Protiva M.: Collect. Czech. Chem. Commun. 53, 870 (1988); CS 261,337, Chem. Abstr. 112, 198432 (1990); CS 264,933; CS 264,934.

517. Jílek J., Valchář M., Holubek J., Dlohožková N., Pomykáček J., Matoušová O., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 53, 2731 (1988); CS 262,296, Chem. Abstr. 112, 198145 (1990); CS 262,587, Chem. Abstr. 112, 198146 (1990); CS 264,541; CS 271,571, EP Appl. 321,100, Chem. Abstr. 112, 7391 (1990).

518. Polívka Z., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 53, 1806 (1988); CS 266,761, Chem. Abstr. 114, 164043 (1991).

519. Polívka Z., Metyšová J., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 53, 884 (1988); CS 261,345, Chem. Abstr. 112, 198143 (1990).

520. Protiva M.: *Xth Int. Symp. Med. Chem., Budapest, August 1988*; Abstr. p. 110; *Proceedings in Medicinal Chemistry '88* (H. van der Goot, G. Domany, L. Pallos and H. Timmerman, Eds), p. 491. Elsevier, Amsterdam 1989.

521. Šindelář K., Holubek J., Matoušová O., Svátek E., Valchář M., Dlabač A., Dlohožková N., Hrbantová M., Protiva M.: Collect. Czech. Chem. Commun. 53, 340 (1988); Activ. Nerv. Super. 29, 174 (1987); CS 247,593, Chem. Abstr. 111, 57558 (1989); CS 247,594, Chem. Abstr. 110, 75344 (1989); CS 260,095, Chem. Abstr. 112, 76978 (1990); CS 260,096, Chem. Abstr. 112, 55641 (1990); CS 260,097, Chem. Abstr. 112, 55640 (1990); CS 260,098, Chem. Abstr. 112, 55928 (1990).

522. Šindelář K., Šedivý Z., Hrbantová M., Valchář M., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 53, 381 (1988); CS 261,294, Chem. Abstr. 112, 198383 (1990); CS 261,295, Chem. Abstr. 112, 216468 (1990).

523. Valenta V., Hulinská H., Holubek J., Dlabač A., Metyš J., Frycová H., Protiva M.: Collect. Czech. Chem. Commun. 53, 860 (1988); CS 261,313, Chem. Abstr. 112, 198422 (1990); CS 262,162, Chem. Abstr. 112, 198144 (1990); CS 262,163, Chem. Abstr. 112, 216724 (1990).

524. Vejdělek Z., Holubek J., Buděšínský M., Ryska M., Svátek E., Protiva M.: Collect. Czech. Chem. Commun. 53, 361 (1988).

525. Vejdělek Z., Metyš J., Holubek J., Buděšínský M., Svátek E., Matoušová O., Protiva M.: Collect. Czech. Chem. Commun. 53, 132 (1988); CS 260,088, Chem. Abstr. 112, 77238 (1990).

1989

526. Buděšínský M., Symerský J., Podlaha J., Podlahová J., Polívka Z., Protiva M.: J. Heterocycl. Chem. 26, 1229 (1989).

527. Červená I., Holubek J., Svátek E., Metyš J., Protiva M.: Collect. Czech. Chem. Commun. 54, 1966 (1989); CS 268,634, Chem. Abstr. 115, 49081 (1991); CS 268,400, Chem. Abstr. 114, 228955 (1991); CS 268,487, Chem. Abstr. 114, 247270 (1991); CS 273,749.

528. Červená I., Holubek J., Svátek E., Metyš J., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 54, 225 (1989); CS 263,982, Chem. Abstr. 113, 40481 (1990).

529. Červená I., Holubek J., Svátek E., Ryska M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1955 (1989); CS 268,630, *Chem. Abstr.* **115**, 49437 (1991); CS 268,632, *Chem. Abstr.* **115**, 49436 (1991); CS 268,633, *Chem. Abstr.* **115**, 49435 (1991).

530. Hulinská H., Buděšínský M., Holubek J., Matoušová O., Frycová H., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1376 (1989); CS 264,949; CS 264,950.

531. Hulinská H., Ryska M., Koruna I., Holubek J., Taimr J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1388 (1989); CS 265,749; CS 265,750.

532. Jílek J., Šindelář K., Pomykáček J., Kmoníček V., Šedivý Z., Hrubantová M., Holubek J., Svátek E., Ryska M., Koruna I., Valchář M., Dlabač A., Metyšová J., Dlohožková N., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 3294 (1989); CS 269,743; CS Appl. 1001-89 (disc. 12.10.90), EP Appl. 396,827 (14.11.90); AU 607,609, *Chem. Abstr.* **115**, 49063 (1991); CS 272,944.

533. Jílek J., Urban J., Kmoníček V., Pomykáček J., Holubek J., Svátek E., Matoušová O., Metyš J., Valchář M., Wildt S., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 2248 (1989); CS 269,646; CS 271,185; CS Appl. 181-89 (disc. 13.06.90).

534. Jílek J., Urban J., Taufmann P., Holubek J., Dlabač A., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1995 (1989); CS 268,486, *Chem. Abstr.* **114**, 228515 (1991); CS 273,750.

535. Kmoníček V., Vejdělek Z., Holubek J., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1721 (1989); CS 267,449.

536. Peřina Z., Šaršúnová M., Zemanová E., Protiva M.: *Pharmazie* **44**, 125 (1989).

537. Polívka Z., Buděšínský M., Holubek J., Schneider B., Šedivý Z., Svátek E., Matoušová O., Metyš J., Valchář M., Souček R., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 2443 (1989); CS 256,229, *Chem. Abstr.* **111**, 214393 (1989); CS 263,993, *Chem. Abstr.* **113**, 40470 (1990); CS Appl. 2013-89 (disc. 12.10.90).

538. Polívka Z., Valenta V., Šindelář K., Holubek J., Buděšínský M., Ryska M., Koruna I., Kohoutová J., Metyš J., Metyšová J., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 235 (1989); CS 263,998, *Chem. Abstr.* **113**, 40480 (1990); CS 263,999, *Chem. Abstr.* **113**, 59241 (1990); CS 264,540; CS 264,800, *Chem. Abstr.* **114**, 122084 (1991).

539. Šindelář K., Holubek J., Svátek E., Matoušová O., Metyšová J., Protiva M.: *J. Heterocycl. Chem.* **26**, 1325 (1989); CS Appl. 2140-89 (disc. 15.01.91); CS Appl. 2141-89 (disc. 15.01.91); CS Appl. 2142-89 (disc. 12.10.90); CS Appl. 2570-89 (disc. 12.10.90).

540. Šindelář K., Hrubantová M., Svátek E., Matoušová O., Metyšová J., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 2240 (1989); CS 268,650, *Chem. Abstr.* **115**, 49419 (1991); CS 269,491, *Chem. Abstr.* **115**, 29137 (1991).

541. Šindelář K., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 229 (1989); CS 263,986, *Chem. Abstr.* **113**, 59185 (1990).

542. Valenta V., Vlková M., Holubek J., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1979 (1989); CS 268,500, *Chem. Abstr.* **114**, 247165 (1991); CS 268,644, *Chem. Abstr.* **115**, 29148 (1991).

543. Valenta V., Vlková M., Protiva M.: *Collect. Czech. Chem. Commun.* **54**, 1403 (1989); CS 267,046, *Chem. Abstr.* **114**, 185307 (1991); CS 268,626, *Chem. Abstr.* **115**, 49439 (1991); CS 628,627, *Chem. Abstr.* **115**, 29149 (1991); CS 268,628, *Chem. Abstr.* **115**, 49722 (1991); CS 268,629, *Chem. Abstr.* **115**, 49438 (1991).

1990

544. Jílek J., Rajšner M., Valenta V., Borovička M., Holubek J., Ryska M., Svátek E., Metyš J., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1828 (1990).

545. Jílek J., Šindelář K., Grimová J., Maturová E., Holubek J., Svátek E., Metyšová J., Metyš J., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1266 (1990); CS 274,344; CS Appl. 4794-89 (discl. 13.12.90).

546. Kmoniček V., Svátek E., Holubek J., Ryska M., Valchář M., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1817 (1990).

547. Kmoniček V., Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1602 (1990).

548. Protiva M., Valenta V., Kopicová Z., Lukáč J., Holubek J., Krejčí I.: *Collect. Czech. Chem. Commun.* **55**, 1278 (1990); CS 273,990.

549. Šindelář K., Holubek J., Koruna I., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1586 (1990); CS Appl. 5530-89 (discl. 13.12.90); CS Appl. 5531-89 (discl. 13.12.90).

550. Šindelář K., Holubek J., Svátek E., Schlanger J., Dlabač A., Valchář M., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 782 (1990); CS 271,850.

551. Šindelář K., Jílek J., Pomykáček J., Valenta V., Hrubantová M., Vlková M., Holubek J., Svátek E., Ryska M., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 2282 (1990).

552. Šindelář K., Valenta V., Holubek J., Matoušová O., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 282 (1990); CS 273,911.

553. Urban J., Šedivý Z., Holubek J., Svátek E., Ryska M., Koruna I., Dlabač A., Valchář M., Metyšová J., Polívka Z., Šindelář K., Pomykáček J., Hrubantová M., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1077 (1990); CS Appl. 4279-89 (discl. 12.10.90).

554. Valenta V., Holubek J., Svátek E., Matoušová O., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1297 (1990).

555. Valenta V., Holubek J., Svátek E., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 2304 (1990).

556. Valenta V., Holubek J., Svátek E., Valchář M., Krejčí I., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 2756 (1990).

557. Valenta V., Šindelář K., Holubek J., Ryska M., Krejčí I., Dlabač A., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1613 (1990); CS 199,314, *Chem. Abstr.* **98**, 89386 (1983).

558. Valenta V., Vejdělek Z., Šindelář K., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1067 (1990); CS 274,203.

559. Valenta V., Vlková M., Holubek J., Svátek E., Metyšová J., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 797 (1990).

560. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 1290 (1990); CS Appl. 5155-89 (discl. 13.12.90).

561. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 2345 (1990).

562. Vejdělek Z., Protiva M.: *Collect. Czech. Chem. Commun.* **55**, 2351 (1990).

562a. Protiva M., Jílek J., Šindelář K., Vejdělek Z., Valchář M., Metyšová J.: *XIth Int. Symp. Med. Chem., Jerusalem, September 1990*; *Abstr. p. 3; Proceedings in Trends in Medicinal Chemistry '90*, in press. Blackwell Sci. Publ. 1991.

8.2 PART B

This part contains references to papers or patents of other authors which are connected in some way with the work mentioned in Part A. Most of the references in this part deal with the further fate of the selected compounds described in the review. They refer to their pharmacology, toxicology, pharmacokinetics, metabolism, various other

properties and results of their clinical testing. Some of the references here document the connection of our chemical work with that of other chemical teams, i.e. independent work in similar lines proceeding before our experimental work, simultaneously or after it. Papers which were used by our group as starting points for our own work and papers describing the chemistry or biological properties of standard drugs, used by us as prototypes, were also partly included in this section of references.

563. Vejdělek Z.: *Cesk. Farm.* 4, 136 (1955).
564. Jílek J.: *Cesk. Farm.* 9, 193 (1960).
565. Paton W.D.M., Zaimis E.J.: *Nature* 162, 810 (1948); *Pharmacol. Rev.* 4, 219 (1952).
566. Marxer A., Miescher K.: *Helv. Chim. Acta* 34, 924 (1951).
567. Trčka V., Lorencová L.: *Cesk. Farm.* 6, 360 (1957).
568. Trčka V., Vaněček M.: *Cesk. Farm.* 8, 316 (1959).
569. Gross J.: *Activ. Nerv. Super.* 2, 338 (1960).
570. Gross J., Hosák L.: *Farmakoter. Zpr.* 8, 117 (1963).
571. Trávníček V., Pokorný J.: *Farmakoter. Zpr.* 8, 353 (1963).
572. Jadrný J.: *Rozhl. Chir.* 42, 534 (1963).
573. Hosák L., Rýzner J.: *Activ. Nerv. Super.* 6, 229 (1964).
574. Barlow R.B., Ing H.R.: *Nature* 161, 718 (1948); *Br. J. Pharmacol.* 3, 298 (1948).
575. Paton W.D.M., Zaimis E.J.: *Nature* 161, 718 (1948).
576. Van Rossum J.M., Ariens E.J., Linssen G.H.: *Atti XI Congresso Soc. Ital. Anestesiol.*, Venezia 1958, p. 229.
577. Fusco R., Palazzo G., Knuesli R.: *Rend. Ist. Super. Sanita (Roma)* 12, 69 (1949).
578. Vaněček M., Votava Z.: *Cesk. Fysiolog.* 4, 349 (1955).
579. Mišurec J., Uhlíř F., Kaupa R.: *Cesk. Psychiat.* 55, 96 (1959).
580. Pokorný J.: *Farmakoter. Zpr.* 4, 131 (1958).
581. Della Bella D., Villani R., Zuanazzi G.F.: *Boll. Soc. Ital. Biol. Sper.* 32, 483 (1956).
582. Della Bella D., Villani R., Zuanazzi G.F.: *Arch. Exp. Path. Pharmakol.* 229, 536 (1956).
583. Cannon J.G. in: *Burger's Medicinal Chemistry* (M.E. Wolff, Ed.), Pt III, p. 339. Wiley, New York 1981.
584. Prelog V., Juhász S., Režek A., Stern P.: *Helv. Chim. Acta* 25, 907 (1942).
585. Meunier H., Carraz G., Meunier Y., Eymard P., Aimard M.: *Therapie* 18, 435 (1963); *Chem. Abstr.* 62, 13738 (1965).
586. Carraz G., Darbon M., Lebreton S., Beriel H.: *Therapie* 19, 468 (1964); *Chem. Abstr.* 63, 7536 (1965).
587. Souček K., Vencovský E., Žatecká I.: *Cesk. Psychiat.* 79, 200 (1983).
588. Plačková Z., Hais I.M.: *Cesk. Farm.* 12, 242 (1963).
589. Vejdělek Z., Trčka V.: *Experientia* 15, 215 (1959).
590. Vejdělek Z., Trčka V., Vaněček M., Kakáč B., Holubek J.: *Collect. Czech. Chem. Commun.* 35, 2810 (1970).
591. Ripka O.: Personal communication (1963).
592. Everett A.J., Lowe L.A., Wilkinson S.: *J. Chem. Soc. D, Chem. Commun.* 1970, 1020.

593. Votava Z., Metyšová J.: *Physiol. Bohemoslov.* 8, 431 (1959).

594. Votava Z., Roth Z.: *Cesk. Fysiol.* 8, 260 (1959).

595. Bargár M.: *Cesk. Fysiol.* 11, 505 (1962).

596. Luettringhaus A., Kerp L., Preugschas H.: *Arzneim.-Forsch.* 7, 222 (1957).

597. Luettringhaus A., Kerp L., Preugschas H.: *Festschrift A. Stoll*, p. 517. Birkhaeuser, Basel 1957.

598. Kerp L.: *Arch. Int. Pharmacodyn. Ther.* 112, 134 (1957).

599. Biel J.H., Horita A., Drukier A.E. in: *Medicinal Chemistry*, Vol. 4/1 *Psychopharmacological Agents* (M. Gordon, Ed.), p. 359. Academic Press, New York 1964.

600. Boura A.L.A., Green A.F.: *Br. J. Pharmacol.* 20, 36 (1963).

601. Stein G.A., Sletzinger M., Arnold H., Reinhold D., Gaines W., Pfister K. III: *J. Am. Chem. Soc.* 78, 1514 (1956).

602. Stone C.A., Torchiana M.L., Navarro A., Beyer K.H.: *J. Pharmacol. Exp. Ther.* 117, 169 (1956).

603. Trčka V., Vaněček M.: *Farmakoter. Zpr.* 8, 65 (1962).

604. Blackman J.G., Ray C.: *Br. J. Pharmacol.* 22, 56 (1964).

605. Francová V., Plačková Z., Hais I.M.: *Cesk. Farm.* 10, 193 (1961).

606. Ripka O., Mališ F., Teichmann V., Dráb K.: *Prakt. Lek.* 42, 138 (1962); *Cor Vasa* 2(2), 130 (1960).

607. Ripka O., Mališ F., Teichmann V.: *Farmakoter. Zpr.* 8, 89 (1962).

608. Ripka O.: *Acta Univ. Carol. (Med.)* 6(3), 277 (1960).

609. Fojtík F., Lukašík R.: *Farmakoter. Zpr.* 9, 165 (1963).

610. Vocetková A.: *Farmakoter. Zpr.* 10, 72 (1964).

611. Guettner J., Hnízdil J.: *Farmakoter. Zpr.* 10, 139 (1964).

612. Císař L., Pokorný M.: *Farmakoter. Zpr.* 10, 505 (1964).

613. Kráčmarová J., Jindra A.: *Cesk. Farm.* 11, 457 (1962).

614. Melich H.: *Cesk. Farm.* 10, 381 (1961).

615. Bovet D., Depierre F., De Lestrange Y.: *Compt. Rend.* 225, 74 (1947).

616. Melich H.: *Cesk. Farm.* 6, 64 (1957).

617. Buděšínský B.: *Chem. Listy* 49, 1524 1955.

618. Buděšínský B., Vaníčková E.: *Chem. Listy* 50, 1241 (1956).

619. Jung Z.: *Cesk. Farm.* 7, 201 (1958); *Czech. Pharmacopoeia* 2, Suppl., 53 (1959).

620. Markalous P.: *Farmakoter. Zpr.* 1957, 63.

621. Vacek J.: *Farmakoter. Zpr.* 1959, 172.

622. Castaner J., Paton D.M.: *Drugs Future* 2, 27 (1977); 3, 81 (1978); 4, 70 (1979); 5, 49 (1980).

623. Cheney L.C., Smith R.R., Binkley S.N.: *J. Am. Chem. Soc.* 71, 60 (1949).

624. Thuillier G., Rumpf P., Daville B.: *Bull. Soc. Chim. Fr.* 1960, 1786.

625. Pavlíková L., Šmolík S., Franc Z.: *Cesk. Farm.* 24, 336 (1975).

626. Šmejkal V.: *Farmakoter. Zpr.* 15, 315 (1969).

627. Loefgren N.: *Arkiv Kemi Mineral. Geol.* 22, A(18), 1 (1946).

628. Hach V., Horáková Z., Reichelt J., Havlová D.: *Chem. Listy* 51, 547 (1957); *Collect. Czech. Chem. Commun.* 22, 1887 (1957).

629. Horáková Z., Hach V.: *Cesk. Farm.* 4, 234 (1955).

630. Horáková Z.: Farmakoter. Zpr. 4, 117 (1958).

631. Hach V., Hoch B., Horáková Z., Pokorný J.: Česk. Farm. 8, 326 (1959).

632. Pokorný J.: Farmakoter. Zpr. 4, 124 (1958).

633. Strmiska J., Hrnčíř V.: Farmakoter. Zpr. 8, 275 (1962).

634. Káclová J., Kindlová M.: Farmakoter. Zpr. 8, 283 (1962).

635. Novák L., Antalovská Z., Bittner J., Šícha V.: Farmakoter. Zpr. 8, 290 (1962).

636. Scheinar J., Scheinárova A.: Farmakoter. Zpr. 8, 299 (1962).

637. Beran V.: Farmakoter. Zpr. 8, 392 (1962).

638. Lučanský A., Matisko J.: Rozhl. Chir. 43, 407 (1964).

639. Říha J.: Rozhl. Chir. 43, 414 (1964).

640. Mečíř S.: Farmakoter. Zpr. 11, 224 (1965).

641. Klesnil J.: Farmakoter. Zpr. 11, 227 (1965).

642. Volc A.: Farmakoter. Zpr. 11, 304 (1965).

643. Kikumoto R., Tobe A., Tonomura S.: J. Med. Chem. 24, 145 (1981).

644. Blancafort P.: Drugs Future 5, 611 (1980); 6, 794 (1981); 7, 900 (1982); 8, 1039 (1983); 9, 931 (1984); 10, 1006 (1985); 11, 1050 (1986); 12, 1146 (1987).

645. Lapka R., Valchář M.: Private communication.

646. Schneider B., Hašek J., Ječný J.: Collect. Czech. Chem. Commun. 55, 1529 (1990).

647. Valchář M., Dobrovský K., Dlohožková N., Dlabač A.: Activ. Nerv. Super. 32, 224 (1990).

648. Dobrovský K., Valchář M., Dlabač A.: Activ. Nerv. Super. 32, 227 (1990).

649. Metyšová J., Tynková J.: Activ. Nerv. Super. 32, 222 (1990).

650. Lapka R., Šmolík S., Brejcha A.: Activ. Nerv. Super. 32, 225 (1990).

651. Lapka R., Brejcha A., Šmolík S.: Česk. Farm. 39, 258 (1990).

652. Poláková L., Ryska M., Koruna I., Metyšová J., Lapka R., Šišpera L., Svátek E., Šindelář K.: Activ. Nerv. Super. 32, 228 (1990).

653. Poláková L., Koruna I., Ryska M., Metyšová J., Lapka R., Šišpera L., Svátek E.: Česk. Farm. 39, 254 (1990).

654. Šindelář K., Pomykáček J., Holubek J., Svátek E., Valchář M., Dobrovský K., Metyšová J., Polívka Z.: Collect. Czech. Chem. Commun. 56, 459 (1991).

655. Halpern B.N.: Arch. Int. Pharmacodyn. Ther. 68, 339 (1942).

656. Einhorn A., Uhlsfelder E.: Justus Liebigs Ann. Chem. 371, 131 (1909).

657. Schallek W., Heise G.A., Keith E.F., Bagdon R.E.: J. Pharmacol. Exp. Ther. 126, 270 (1959).

658. Kraft K.: Chem. Ber. 84, 150 (1951).

659. Schmidt E.: Arch. Pharm. 247, 141 (1909).

660. Maxwell R.D.H., Campbell A.J.: Lancet 1953, 455.

661. Braun J.v., Blessing G.: Ber. Dtsch. Chem. Ges. 56, 2153 (1923).

662. Thorpe P.J.: Drugs Future 3, 288 (1978); 4, 303 (1979); 6, 255 (1981); 7, 287 (1982); 8, 363 (1983); 9, 295 (1984).

663. Lassen J.B.: Psychopharmacologia 37, 331 (1974); 43, 25 (1975).

664. Carlsson A., Lindqvist M., Wysokowski J., Corrodi H., Junggren U.: Acta Pharm. Succ. 7, 293 (1970).

665. Karmarkar S.M., Kelkar S.L., Wadia M.S.: *Synthesis* 1985, 510.

666. Adams S.S., McCullough K.F., Nicholson J.S.: *Arch. Int. Pharmacodyn. Ther.* 178, 115 (1969).

667. Loew E.R., Kaiser M.E., Moore V.: *J. Pharmacol. Exp. Ther.* 83, 120 (1945).

668. Křeček J., Křečková J.: *Biol. Listy* 31, Suppl. 1, 30 (1950).

669. Šmahel O.: *Antihistaminika - Nová Řada Léků*. Spolek Česk. Lek., Praha 1949.

670. Modr O.: *Farmakoter. Zpr.* 8, 226 (1962).

671. Jindra A., Motl O.: *Cesk. Farm.* 1, 632 (1952).

672. Kráčmar J., Blažek J., Stejskal Z.: *Pharmazie* 12, 803 (1957).

673. Vacek J.: *Cesk. Farm.* 6, 550 (1957); 7, 348 (1958).

674. Francová V., Hais I.M., Roth Z.: *Cesk. Farm.* 6, 517 (1957).

675. Křeček J., Křečková J., Vaicenbacher V.: *Biol. Listy* 31, Suppl. 1, 54 (1950).

676. Benešová O., Křeček J., Křečková J., Šterzl J., Vaicenbacher V., Zikmund E.: *Cas. Lek. Česk.* 89, 709 (1950).

677. Jelínek V.: *Biol. Listy* 31, Suppl. 1, 62 (1950).

678. Šmahel O.: *Cas. Lek. Česk.* 88, 1060 (1949).

679. Hahn P., Poupa O.: *Biol. Listy* 31, Suppl. 1, 70 (1950).

680. Hahn P., Poupa O.: *Nature* 167, 84 (1951).

681. Šterzl J.: *Biol. Listy* 31, Suppl. 1, 39 (1950).

682. Šterzl J., Křeček J.: *Cas. Lek. Česk.* 89, 35 (1950).

683. Šterzl J.: *Cesk. Biol.* 1, 166 (1952).

684. Křeček J.: *Compt. Rend. Soc. Biol.* 142, 1039 (1948).

685. Křeček J., Křečková J.: *Biol. Listy* 30, 29 (1949).

686. Poupa O.: *Compt. Rend. Soc. Biol.* 142, 1043 (1948).

687. Zadina R., Polášek F.: *Cas. Lek. Česk.* 91, 300 (1952).

688. Poupa O.: *Nature* 161, 235 (1948).

689. Kozlík V.: *Cesk. Farm.* 2, 240 (1953).

690. Ryšková M., Votava Z.: *Cas. Lek. Česk.* 94, 955 (1955).

691. Kouba K.: *Prakt. Lek.* 35, 65 (1955).

692. Van Beek M.C., Timmerman H.: *J. Pharm. Pharmacol.* 26, 57 (1974).

693. Sutherland L.H., Eberlin S.L., Forsythe J.D., Halverstadt J.F., Vaughan J.R., Jr, Clapp R.C.: *J. Org. Chem.* 14, 237 (1940).

694. Pailer M., Nowotny K.: *Monatsh. Chem.* 89, 342 (1958).

695. Hedges A., Turner P., Harry T.V.A.: *J. Clin. Pharmacol.* 11, 423 (1971).

696. Weidmann H., Petersen P.V.: *J. Pharmacol. Exp. Ther.* 108, 201 (1953).

697. Metyšová J., Metyš J., Votava Z.: *Cesk. Farm.* 12, 448 (1963).

698. Hirai K., Ishiba T., Sugimoto H., Fujishita T., Tsukinoki Y., Hirose K.: *J. Med. Chem.* 24, 20 (1981).

699. Votava Z.: *Cas. Lek. Česk.* 94, 312 (1955).

700. Clarke E.G.C.: *J. Pharm. Pharmacol.* 9, 752 (1957).

701. Kráčmar J.: *Cesk. Farm.* 6, 558 (1957); 7, 348 (1958).

702. Jančík F., Körbl J., Buben F.: *Cesk. Farm.* 10, 416 (1961).

703. Tobiška J.: *Cesk. Biol.* 6, 309 (1957).

704. Kohout J., Korbová L.: *Cas. Lek. Cesk.* 94, 294 (1955).

705. Kohout J., Korbová L., Kornalík F.: *Cesk. Fysiol.* 8, 209 (1959).

706. Kohout J.: *Cas. Lek. Cesk.* 97, 114 (1958).

707. Kohout J., Korbová L., Blažek K.: *Cas. Lek. Cesk.* 100, 905 (1961).

708. Melich H.: *Cesk. Farm.* 4, 439 (1955); 6, 556 (1957).

709. Dočekal B.: *Prakt. Lek.* 37, 997 (1957).

710. Švorčík C., Housová H., Šmahel O.: *Cas. Lek. Cesk.* 96, 890 (1957).

711. Kohout J., Korbová L., Kornalík F.: *Cas. Lek. Cesk.* 98, 636 (1959).

712. Fučík M., Kohout J., Jablonská M.: *Cas. Lek. Cesk.* 100, 689 (1961).

713. Votava Z., Vaněček M.: *Physiol. Bohemoslov.* 5, Suppl., 58 (1956).

714. Gay L.N., Carliner P.E.: *Science* 109, 359 (1949); *Bull. Johns Hopkins Hosp.* 84, 470 (1949).

715. Vojtěchovský M., Vinař O., Votava Z.: *Cas. Lek. Cesk.* 95, 1384 (1956).

716. Feleky E.: *Farmacia* 27, 215 (1958).

717. Bártová D., Náhunek K.: *Activ. Nerv. Super.* 2, 330 (1960).

718. Vojtěchovský M., Horáčková E., Kuhn E.: *Activ. Nerv. Super.* 2, 346 (1960).

719. Strmiska J., Dráždil M.: *Farmakoter. Zpr.* 9, 129 (1963).

720. Landa L.: *Farmakoter. Zpr.* 9, 383 (1963).

721. Navrátil K.: *Prakt. Lek.* 43, 261 (1963); 46, 228 (1966).

722. Woyton J.: *Farmakoter. Zpr.* 9, 701 (1963).

723. Vojtěchovský M., Vinař O., Votava Z.: *Farmakoter. Zpr.* 1957 (3), 3.

724. Vinař O.: *Farmakoter. Zpr.* 1958 (4), 164.

725. Vojtěchovský M., Horáčková E., Grof S.: *Cesk. Psychiat.* 56, 34 (1960).

726. Dušek E.: *Farmakoter. Zpr.* 10, 256 (1964).

727. Metyšová J., Votava Z., Horáková Z.: *Cesk. Fysiol.* 7, 526 (1958).

728. Metyšová J., Votava Z., Horáková Z.: *Cesk. Farm.* 8, 362 (1959).

729. Votava Z., Metyšová J., Horáková Z.: *Arzneim.-Forsch.* 11, 531 (1961).

730. Arnold H., Brock N., Kuehas E., Lorenz D.: *Arzneim.-Forsch.* 4, 189 (1954).

731. Brock N., Lorenz D., Veigel H.: *Arzneim.-Forsch.* 4, 262 (1954).

732. Večerková J., Kácl K., Novotná E., Nikoličová L.: *Cesk. Farm.* 14, 444 (1965).

733. Hynie I., Prokeš J., Kácl K.: *Cesk. Farm.* 14, 466 (1965).

734. Jokl V., Koubalíková I., Vítkovič B.: *Cesk. Farm.* 39, 168 (1990).

735. Francová V.: *Arzneim.-Forsch.* 12, 709 (1962).

736. Francová V.: *Cesk. Farm.* 11, 143 (1962).

737. Jindra A., Lagusová H., Šípal H.: *Cesk. Farm.* 11, 126 (1962).

738. Melich H.: *Cas. Lek. Cesk.* 100, 1086 (1961); *Cesk. Farm.* 11, 221 (1962); *Farmakoter. Zpr.* 8, 58 (1962).

739. Rameš M., Šmejkal J.: *Farmakoter. Zpr.* 8, 32 (1962).

740. Hodek B.: *Cas. Lek. Cesk.* 102, 329 (1963).

741. Samek B.: *Farmakoter. Zpr.* 9, 125 (1963).

742. Janda J.: *Farmakoter. Zpr.* 9, 527 (1963).
743. Pasková Z.: *Farmakoter. Zpr.* 10, 36 (1964).
744. Mikolášek J.: *Farmakoter. Zpr.* 11, 163 (1965).
745. Polcrová A., Jezdinský J.: *Farmakoter. Zpr.* 28, 123 (1982).
746. Jirásek L., Schwank R.: *Cesk. Dermatol.* 38, 225 (1963).
747. Stránská T., Mellan J.: *Farmakoter. Zpr.* 9, 19 (1963).
748. Fraňková S., Horáčková E.: *Activ. Nerv. Super.* 3, 326 (1961).
749. Navrátil K.: *Prakt. Lek.* 43, 259 (1963).
750. Pokorný M.: *Farmakoter. Zpr.* 9, 454 (1963).
751. Kemrová R.: *Farmakoter. Zpr.* 9, 528 (1963); *Prakt. Lek.* 44, 267 (1964).
752. Borysová L.: *Farmakoter. Zpr.* 10, 47 (1964).
753. Kříž K.: *Farmakoter. Zpr.* 11, 165 (1965).
754. Navrátil K.: *Cesk. Farm.* 11, 334 (1962).
755. Melich H.: *Cesk. Farm.* 12, 118 (1963).
756. Modr Z.: *Farmakoter. Zpr.* 8, 329 (1962).
757. Šimkanin C., Pavlík M., Šrameková E.: *Farmakoter. Zpr.* 8, 339 (1962).
758. Malý B., Halatová A.: *Farmakoter. Zpr.* 8, 345 (1962).
759. Ouředník A.: *Farmakoter. Zpr.* 10, 23 (1964).
760. Beneš J.: *Farmakoter. Zpr.* 10, 32 (1964).
761. Borysová L.: *Farmakoter. Zpr.* 10, 706 (1964).
762. Rowe R.G., Young M.J.: *Appl. Therapeutics* 5, 783, 784, 802 (1963).
763. Healy J.M.: *Br. J. Clin. Pract.* 16, 657 (1962).
764. Cowan D.I.: *Med. Proc.* 8, 274 (1962).
765. Mendick N.: *Practitioner* 191, 211 (1963).
766. Holzer E.: *J. Coll. Gen. Pract.* 6, 338 (1963).
767. Leslie G.: *Br. J. Dermatol.* 75, 285 (1963).
768. Campbell A.E.R.: *Br. J. Dis. Chest* 57, 153 (1963).
769. Vojtěchovský M., Horáčková E., Kuhn E.: *Activ. Nerv. Super.* 2, 346 (1960).
770. Janoušek Z., Jaroš Z.: *Farmakoter. Zpr.* 14, 187 (1968).
771. Krejčí L.: *Farmakoter. Zpr.* 14, 216 (1968).
772. Novotný L.: *Farmakoter. Zpr.* 14, 257 (1968).
773. Janáček C.: *Farmakoter. Zpr.* 21, 151 (1975).
774. Štěpánek J., Abrahám V.: *Farmakoter. Zpr.* 22, 119 (1976).
775. Bockmuehl M., Ehrhart G.: *Justus Liebigs Ann. Chem.* 561, 52 (1948).
776. Ing H.R., Dawes G.S., Wajda J.J.: *J. Pharmacol. Exp. Ther.* 85, 85 (1945).
777. Wilson M., Kyi Z.-Y.: *J. Chem. Soc.* 1952, 1321.
778. Katz L., Karger L.S.: *J. Am. Chem. Soc.* 74, 4085 (1952).
779. Normant H., Angelo B.: *Bull. Soc. Chim. Fr.* 1960, 354.
780. Ehrhart G.: *Arch. Pharm.* 295, 196 (1962).

781. Holland G.F., Sullivan H.R.: *J. Am. Chem. Soc.* **75**, 5898 (1953).

782. Taylor J.D., Wykes A.A., Gladish Y.C., Martin W.B.: *Nature* **187**, 941 (1960).

783. Denton J.J., Neier W.B., Lawson V.A.: *J. Am. Chem. Soc.* **71**, 2053 (1949).

784. Votava Z., Metyšová J., Metyš J.: *Cesk. Farm.* **9**, 286 (1960).

785. Skála I.: Private communication.

786. Londýn M., Svoboda J., Paleček J.: *XVIIIth Conf. Synth. Anal. Drugs, Písek, April 1987*; Abstr. p. 136; *Cesk. Farm.* **37**, 137 (1988).

787. Hamor T.A., Guy J.J.: *Proc. 2nd Crystallogr. Meeting, Keszthely (Hungary), August 1974*, p. 420.

788. Guy J.J., Hamor T.A.: *J. Chem. Soc., Perkin Trans. 2* 1975, 467.

789. Buděšínský B.: *Chem. Listy* **49**, 1524 (1955); *Collect. Czech. Chem. Commun.* **21**, 146 (1956).

790. Kráčmar J.: *Cesk. Farm.* **12**, 458 (1963); **15**, 169 (1966).

791. Kráčmar J.: *Cesk. Farm.* **14**, 206 (1965).

792. Votava Z., Šrámková J.: *Cesk. Farm.* **3**, 238 (1954).

793. Hoch B.: *Farmakoter. Zpr.* **1956**(1/2), 3.

794. Votava Z.: *Farmakoter. Zpr.* **5**, 265 (1959).

795. Votava Z., Metyš J., Metyšová-Šrámková J.: ref. 165, p. 307.

796. Votava Z., Šrámková J., Vaněček M.: *Farmakoter. Zpr.* **1956**(1/2), 13.

797. Vacek L., Šel B.: *Scripta Med. (Brno)* **46**, 241 (1973); *Chem. Abstr.* **80**, 66616 (1974).

798. Votava Z.: *Farmakol. Toxikol.* **25**, 291 (1962).

799. Votava Z., Šrámková J., Chvátalová M.: *Cesk. Fysiol.* **1**, 274 (1952).

800. Votava Z., Vaněček M.: *Cesk. Farm.* **4**, 283 (1955).

801. Votava Z., Šrámková J.: *Farmakoter. Zpr.* **1956**(1/2), 31.

802. Metyš J., Votava Z., Ronský R.: *Cesk. Fysiol.* **7**, 525 (1958).

803. Metyš J., Votava Z.: *Cas. Lek. Cesk.* **98**, 182 (1959).

804. Metyš J., Ronský R., Votava Z.: *Cas. Lek. Cesk.* **98**, 336 (1959).

805. Metyš J., Votava Z.: *Cas. Lek. Cesk.* **98**, 1453 (1959).

806. Metyš J., Votava Z.: *Farmakoter. Zpr.* **5**, 316 (1959).

807. Metyš J., Metyšová J., Votava Z., Roth Z.: *Cesk. Farm.* **9**, 1 (1960).

808. Ronský R., Metyš J.: *Cas. Lek. Cesk.* **99**, 1138 (1960).

809. Vaněček M., Votava Z.: *Cesk. Fysiol.* **5**, 362 (1956).

810. Siblíková-Zbudovská O., Hais I.M.: *Physiol. Bohemoslov.* **7**, 188 (1958).

811. Melich H.: *Cesk. Farm.* **6**, 412 (1957).

812. Francová V., Hais I.M.: *Proc. IVth Conf. Czech. Physiol. Pharmacol. Biochem., Starý Smokovec 1956*; Abstr. p. 22.

813. Franc Z., Francová V., Horešovský O., Piták O.: *Cesk. Gastroenterol.* **13**, 572 (1959).

814. Francová V., Svatoš A., Franc Z.: *Cesk. Fysiol.* **9**, 76 (1960).

815. Francová V., Svatoš A., Franc Z., Hais I.M., Horešovský O.: *Physiol. Bohemoslov.* **10**, 390 (1961).

816. Ronský R.: *Prakt. Lek.* **37**, 442, 643 (1957).

817. Trojan A.J.: *Farmakoter. Zpr.* **5**, 286 (1959).

818. Trojan A.J.: *Cas. Lek. Cesk.* **99**, 704 (1960).

819. Šel B., Vacek L.: *Prakt. Lek.* **54**, 676 (1974).

820. Bittner J.: *Farmakoter. Zpr.* **1956**(1/2), 37.

821. Ronský R.: *Prakt. Lek.* **39**, 423 (1959).

822. Melich H.: *Farmakoter. Zpr.* **9**, 83 (1963); *Cesk. Farm.* **12**, 223 (1963).

823. Ronský R.: *Cas. Lek. Cesk.* **98**, 57 (1959).

824. Metyš J., Ronský R., Votava Z., Červený O., Skála I.: *Rev. Czech. Med.* **6**(1), 59 (1960).

825. Zejmalová E.V., Votava Z.: *Cesk. Farm.* **11**, 466 (1962).

826. Veselý K.T.: *Cesk. Gastroenterol.* **19**, 514 (1965).

827. Turek J., Skála I., Polomisová L.: *Cas. Lek. Cesk.* **103**, 209 (1964).

828. Ronský R., Metyš J., Stamidis L.: *Cesk. Fysiol.* **11**, 528 (1962).

829. Plummer A.J., Barrett W.E., Rutledge R., Yonkman F.F.: *J. Pharmacol. Exp. Ther.* **108**, 292 (1953).

830. Veselý K.T.: *Cesk. Gastroenterol.* **18**, 445 (1964).

831. Pritchard B.N.C.: *Drugs* **7**, 55 (1974).

832. Szarvasi E., Bayssat M., Fontaine L., Grand M., Letourneau C., Auger B.: *Bull. Soc. Chim. Fr.* **1966**, 1838.

833. Vejdělek Z., Kakáč B.: *Chem. Listy* **48**, 1086 (1954).

834. Seidl G., Huisgen R.: *Chem. Ber.* **97**, 249 (1964).

835. Ehrhart G., Ruschig H. in: *Arzneimittel-Erwicklung Wirkung, Darstellung* Vol. 1, p. 142. Verlag Chemie, Weinheim 1968.

836. Cook J.W., Hewett C.L.: *J. Chem. Soc.* **1936**, 62.

837. Bardhan J.C., Banerjee R.C.: *J. Chem. Soc.* **1956**, 189.

838. Eberson L., Petrovich J.P., Baird R., Dyckes D., Winstein S.: *J. Am. Chem. Soc.* **87**, 3504 (1965).

839. Johnson W.S., Banerjee D.K., Schneider W.P., Gutsche C.D., Shelberg W.E., Chinn L.J.: *J. Am. Chem. Soc.* **74**, 2832 (1952).

840. Anner G., Miescher K.: *Helv. Chim. Acta* **30**, 1422 (1947).

841. Brossi A., Gutmann H., Jeger O.: *Helv. Chim. Acta* **33**, 1730 (1950).

842. Votava Z., Metyšová J., Soušková M.: *Biochem. Pharmacol.* **8**, 16 (1961).

843. Metyšová J., Metyš J., Votava Z.: *Activ. Nerv. Super.* **4**, 217 (1962); *Arch. Int. Pharmacodyn. Ther.* **144**, 481 (1963).

844. Freed H.: *Am. J. Psychiat.* **117**, 455 (1960).

845. Hádlík J.: *Activ. Nerv. Super.* **9**, 357 (1967); *Farmakoter. Zpr.* **6**, 339 (1968).

846. Boleloucký Z., Stránská R.: *Activ. Nerv. Super.* **9**, 362 (1967); *Farmakoter. Zpr.* **14**, 35 (1968).

847. Škodová I., Jaroš Z.: *Farmakoter. Zpr.* **6**, 333 (1968).

848. Němeček J., Klik J., Hlaváčková M.: *Activ. Nerv. Super.* **8**, 360 (1966).

849. Tesařová O., Oravcová V., Payerová J.: *Activ. Nerv. Super.* **8**, 362 (1966).

850. Grof P., Vinař O.: *Activ. Nerv. Super.* **8**, 380 (1966).

851. Vinař O., Grof P.: *Activ. Nerv. Super.* **8**, 381 (1966).

852. Velek M.: *Activ. Nerv. Super.* **8**, 386 (1966).

853. Souček K., Plzák M., Fischer R.: *Activ. Nerv. Super.* **8**, 385 (1966).

854. Facino R.M., Santagostino G., Corona G.L.: *Biochem. Pharmacol.* **19**, 1503 (1970).

855. Vinař O.: *Activ. Nerv. Super.* 5, 98 (1963).

856. Benešová O., Bohdanecký Z., Metyšová J., Metyš J., Votava Z.: *Cas. Lek. Česk.* 104, 312 (1965).

857. Grof P., Vinař O.: *Activ. Nerv. Super.* 7, 288 (1965).

858. Vinař O., Grof P.: *Activ. Nerv. Super.* 7, 290 (1965).

859. Náhunek K., Mišurec J., Rodová A., Ingrová D., Bártová D.: *Activ. Nerv. Super.* 7, 291 (1965).

860. Náhunek K., Rodová A., Mišurec J.: *Activ. Nerv. Super.* 8, 364 (1966).

861. Hádlík J., Švestka J.: *Activ. Nerv. Super.* 8, 365 (1966).

862. Fouche J., Blondel J.-C., Horclois R., James C., Leger A., Poiget G.: *Bull. Soc. Chim. Fr.* 1972, 3113.

863. Bhattacharyya B.K., Mukherjee S.M.: *Science Culture* 12, 410 (1947); *Chem. Abstr.* 42, 5001 (1948).

864. Bhattacharyya B.K., Sen Gupta P.: *Nature* 170, 710 (1952).

865. Sen Gupta P., Bhattacharyya B.K.: *J. Indian Chem. Soc.* 31, 337 (1954).

866. Johnson W.S., Christiansen R.G.: *J. Am. Chem. Soc.* 73, 5511 (1951).

867. Jacques J.: *Private communication.*

868. Biel J.H.: *J. Am. Chem. Soc.* 71, 1306 (1949).

869. Luduena F.P., Lands A.M.: *J. Pharmacol. Exp. Ther.* 110, 282 (1954).

870. Joseph R., Sorsby A.: *Lancet* 272, 601 (1957).

871. Jílek J., Mychajlyszyn V.: *Chem. Listy* 48, 1210 (1954).

872. Giurgea C.: *Actual. Pharmacol.* 25, 115 (1972); *Med. Actual. (Drugs Today)* 9, 327 (1973).

873. Vítek V., Ryšánek K.: *Cesk. Farm.* 11, 399 (1962).

874. Cavallini G.: *Farm. Sci. Tec. (Pavia)* 2, 89, 94 (1947).

875. Djerassi C., Scholz C.R.: *J. Org. Chem.* 13, 830 (1948).

876. Dahlbom R.: *Acta Chem. Scand.* 3, 32 (1949).

877. Urech E., Marxer A., Miescher K.: *Helv. Chim. Acta* 33, 1386 (1950).

878. Meier R., Yonkman F.F., Craver B.N., Gross F.: *Proc. Soc. Exp. Biol. Med.* 71, 70 (1949).

879. Hoefke W., Kobinger W.: *Arzneim.-Forsch.* 16, 1038 (1966).

880. Baehrung-Kuhlmey S.R.: *Med. Actual. (Drugs Today)* 13, 343 (1977).

881. Eiden F., Schmidt M.: *Arch. Pharm.* 320, 1099 (1987).

882. Huttner C.P., Djerassi C., Beears W.L., Mayer R.L., Scholz C.R.: *J. Am. Chem. Soc.* 68, 1999 (1946).

883. Bovet D., Horclois R., Walther F.: *Compt. Rend. Soc. Biol.* 138, 99 (1944).

884. Tilford C.H., Shelton R.S., Van Campen M.G., Jr.: *J. Am. Chem. Soc.* 70, 4001 (1948).

885. Trčka V., Vejdělek Z.: *Pharmazie* 11, 242 (1956).

886. Trčka V., Lorencová L.: *Cesk. Farm.* 6, 194 (1957).

887. Kakáč B., Vejdělek Z.: *Cesk. Farm.* 5, 140 (1956).

888. Scholz C.R.: *Ind. Eng. Chem.* 37, 120 (1945).

889. Janssen P.A.J., Niemegeers C.J.E., Schellekens K.H.L., Lenaerts F.M., Verbruggen F.J., Van Nueten J.M., Schaper W.K.A.: *Eur. J. Pharmacol.* 11, 139 (1970).

890. Metyš J., Dlabač A., Kazdová E.: *Activ. Nerv. Super.* 17, 219 (1975).

891. Metyš J., Dlabač A.: *Activ. Nerv. Super.* 19 (Suppl. 2), 337 (1977).

892. Švestka J., Náhunek K., Češková E.: *Acta Fac. Med. Univ. Brun.* 65 (Adv. Psychopharmacol. Psychopharmacother.), 177 (1979).

893. Engelhardt E.L., Zell H.C., Saari W.S., Christy M.E., Colton C.D., Stone C.A., Stavorski J.M., Wengen H.C., Ludden C.T.: *J. Med. Chem.* **8**, 829 (1965).

894. Eisleb O., Schaumann O.: *Dtsch. Med. Wochschr.* **65**, 967 (1939).

895. Janssen P.A.J., Eddy N.B.: *J. Med. Pharm. Chem.* **2**, 31 (1960).

896. Jensen K.A., Lindquist F., Rekling E., Wolfsbrandt C.G.: *Dans. Tids. Farm.* **17**, 173 (1943); *Chem. Abstr.* **39**, 2506 (1945).

897. Hess R., Herz A., Friedel K.: *J. Pharmacol. Exp. Ther.* **179**, 474 (1971).

898. Chen G., Portman R., Wickel A.: *J. Pharmacol. Exp. Ther.* **103**, 330 (1951).

899. Kulkarni S.K., Aley K.O.: *Drugs Today* **24**, 175 (1988).

900. Erlenmeyer H., Aeberli M., Sorkin E.: *Helv. Chim. Acta* **30**, 2066 (1947).

901. Kitagawa H., Kurahashi K., Fuhiwara M., Kohei H.: *Arzneim.-Forsch.* **28**, 2122 (1978).

902. Metyš J., Metyšová J., Votava Z., Kazdová E.: *Activ. Nerv. Super.* **15**, 96 (1973).

903. Metyš J., Metyšová J.: *Activ. Nerv. Super.* **16**, 161 (1974).

904. Wildt S., Metyš J., Bartošová M.: *Activ. Nerv. Super.* **16**, 162 (1974).

905. Wildt S., Metyš J., Bartošová M.: *Cesk. Fysiol.* **23**, 374 (1974).

906. Metyš J., Metyšová J., Kazdová E.: *IXth Congr. Coll. Int. Neuro-Psychopharmacol., Paris, July 1974*; *J. Pharmacol. (Paris)* **5** (Suppl. 2), 67 (1974).

907. Benešová O., Dytarová J.: *Activ. Nerv. Super.* **18**, 227 (1976).

908. Franc Z., Šmolík S., Horešovský O.: *Cesk. Farm.* **29**, 290 (1980).

909. Kulíšková O., Náhunek K., Mišurec J., Sláma B., Švestka J., Kamenická V.: *Activ. Nerv. Super.* **17**, 236 (1975).

910. Náhunek K., Sláma B., Kulíšková O., Kamenická V.: *Acta Fac. Med. Univ. Brun.* **65** (Adv. Psychopharmacol. Psychopharmacother.), 197 (1979).

911. Vacher J., Lakatos C., Rispal G., Duchene-Marullaz P.: *Arch. Int. Pharmacodyn. Ther.* **165**, 1 (1967).

912. Irikura T., Masuzawa K., Nishino K., Kitagawa M., Uchida H., Ichinoseki N., Ito M.: *J. Med. Chem.* **11**, 801 (1968).

913. Nogradi M.: *Drugs Future* **9**, 30 (1984); **14**, 88 (1989).

914. Maxwell R.A., Mull R.P.: *Experientia* **15**, 267 (1959).

915. Kolínský J.: *Cesk. Farm.* **4**, 27 (1955).

916. Vejdělek Z., Tůma L.: *Cesk. Farm.* **4**, 510 (1955).

917. Church M.K.: *Drugs Future* **3**, 465 (1978); **4**, 460 (1979); **5**, 319 (1980); **6**, 387 (1981); **7**, 435 (1982).

918. Takagi H., Kitamura K., Kobayashi S., Inada S., Katayama T.: *Takamine Kenkyusho Nempo* **13**, 122 (1961); *Chem. Abstr.* **56**, 10870 (1962).

919. Winkler T.: *Private communication*.

920. Anderson W.K., Friedman A.E.: *Can. J. Chem.* **49**, 668 (1971).

921. Ghose K.: *Drugs Future* **11**, 276 (1986); **12**, 412 (1987); **13**, 387 (1988); **14**, 391 (1989).

922. Cronyn M.W.: *J. Org. Chem.* **14**, 1013 (1949).

923. Ginsburg D.: *J. Org. Chem.* **15**, 1003 (1950).

924. Bosch J., Bonjoch J.: *Heterocycles* **14**, 505 (1980).

925. Brossi A., Besendorf H., Pelminent B., Walter M., Schnider O.: *Helv. Chim. Acta* **43**, 1459 (1960).

926. Babbini M., Gaiardi M., Bartoletti M.: *Life Sci.* **25**, 15 (1979).

927. Keller O., Steiger N., Sternbach L.H. (Hoffmann – La Roche Inc.): U.S. 3,203,990, Chem. Abstr. 64, 3576 (1966).

928. Trčka V., Dlabač A., Vaněček M.: J. Physiol. (Paris) 53, 488 (1961).

929. Trčka V.: Česk. Fysiol. 8, 582 (1959).

930. Dlabač A., Macek K., Vaněček M., Trčka V.: Česk. Fysiol. 8, 177 (1959).

931. Dlabač A.: Česk. Fysiol. 8, 582 (1959).

932. Vítěk V., Vojtěchovský M., Ryšánek K., Kuhn E.: Activ. Nerv. Super. 2, 360 (1960).

933. Ryšánek K., Vítěk V., Vojtěchovský M., Kuhn E.: Activ. Nerv. Super. 4, 203 (1962); Cas. Lek. Česk. 102, 1099 (1963).

934. Ryšánek K., Vítěk V., Špánková V.: Activ. Nerv. Super. 4, 220 (1962).

935. Ripka O.: Private communication.

936. Vinař O.: Farmakoter. Zpr. 1958, 163.

937. Vinař O.: Activ. Nerv. Super. 2, 359 (1960).

938. Vinař O.: Cas. Lek. Česk. 99, 1422 (1960).

939. Černý L., Štěrbáková E.: Activ. Nerv. Super. 3, 225 (1961).

940. Náhunek K., Rodová A., Bojanovský J.: Česk. Psychiat. 58, 91 (1962).

941. Grof P., Svitavská E., Vojtěchovský M.: Activ. Nerv. Super. 4, 213 (1962).

942. Bojanovský J., Jaroš M.: Česk. Psychiat. 59, 111 (1963).

943. Tesařová O.: Pharmakopsychiat.-Neuro-Psychopharmacol. 5(1), 13 (1972).

944. Tesařová O.: Psychopharmacology 26 (Suppl.), 99 (1972).

945. Tesařová O.: *IXth Congr. Coll. Int. Neuro-Psychopharmacol., Paris, July 1974*; J. Pharmacol. (Paris) 5, Suppl. 2, 98 (1974).

946. Petersen P.V., Lassen P.V., Holm N., Kopf R., Nielsen I.M.: Arzneim.-Forsch. 8, 395 (1958).

947. Metyš J., Metyšová J., Votava Z.: Česk. Farm. 15, 526 (1966).

948. Vencovský E., Šedivec V., Peterová E., Baudiš P., Janovský F.: Česk. Psychiat. 60, 240 (1964).

949. Svátek E.: Česk. Farm. 14, 332 (1965).

950. Leonard N.J., Middleton W.J.: J. Am. Chem. Soc. 74, 5114 (1952).

951. Walker J.: Ann. Rept. Progr. Chem. 49, 202 (1953).

952. Eda B., Tsuda K., Kubo M.: J. Am. Chem. Soc. 80, 2426 (1958).

953. Bellora E., Cereda E., Ezhaya A., Marazzi-Uberti E., Pala G., Donetti A.: Farmaco, Ed. Sci. 35, 490 (1980).

954. Nieschulz O., Popendiker K., Sack K.-H.: Arzneim.-Forsch. 4, 232 (1954).

955. Bourquin J.-P., Schwab G., Gamboni G., Fischer R., Ruesch L., Guldmann S., Theus V., Schenker E., Renz J.: Helv. Chim. Acta 41, 1072 (1958).

956. Anonymous : Ann. Pharm. Fr. 38, 181 (1980); Chem. Abstr. 93, 245522 (1980).

957. Bastian J.-M., Ebnoether A., Jucker E., Rissi E., Stoll A.: Helv. Chim. Acta 49, 214 (1966).

958. Waldvogel E., Schwab G., Bastian J.-M., Bourquin J.-P.: Helv. Chim. Acta 59, 866 (1976).

959. Jelínek I., Snopek J., Smolková-Keulemansová E.: J. Chromatogr. 439, 386 (1988).

960. Metyšová J., Metyš J., Votava Z.: Arzneim.-Forsch. 13, 1039 (1963).

961. Benešová O., Bohdanecký Z., Votava Z., Trinerová I.: Angew. Chem. 75, 139 (1963); Arzneim.-Forsch. 14, 100 (1964).

962. Benešová O., Trinerová I., Votava Z.: *Cesk. Fysiol.* **11**, 506 (1962); *Cesk. Farm.* **12**, 112 (1963).

963. Metyšová J., Votava Z.: *Cesk. Fysiol.* **11**, 524 (1962).

964. Votava Z., Metyšová J., Metyš J., Benešová O., Bohdanecký Z., Soušková M.: *Activ. Nerv. Super.* **5**, 164 (1963).

965. Metyšová J., Metyš J., Votava Z.: *Int. J. Neuropharmacol.* **3**, 361 (1964); *Chem. Abstr.* **61**, 16662 (1964).

966. Stach K., Spingler H.: *Angew. Chem.* **74**, 31 (1962); *Monatsh. Chem.* **93**, 889 (1962).

967. Stach K., Bickelhaupt F.: *Monatsh. Chem.* **93**, 896 (1962).

968. Gradient F., Jucker E., Lindenmann A., Taeschler M.: *Helv. Chim. Acta* **45**, 1860 (1962).

969. Baur E.W.: *J. Pharmacol. Exp. Ther.* **177**, 219 (1971).

970. King T.J.: *Unpublished results.*

971. Vencovský E., Peterová E.: *Cesk. Psychiat.* **58**, 327 (1962).

972. Vencovský E., Šedivec V., Peterová E., Janovský F., Dvořáková M., Baudiš P.: *Activ. Nerv. Super.* **6**, 177 (1964); *Cesk. Psychiat.* **60**, 416 (1964).

973. Vinař O.: *Activ. Nerv. Super.* **5**, 149 (1963); *Prakt. Lek.* **43**, 687 (1963).

974. Mellan J., Pondělíčková J.: *Activ. Nerv. Super.* **6**, 180 (1964); *Cesk. Psychiat.* **60**, 326 (1964); *Farmakoter. Zpr.* **16**, 313 (1970).

975. Vinař O., Grof P.: *Activ. Nerv. Super.* **6**, 179 (1964).

976. Káclová J.: *Activ. Nerv. Super.* **7**, 286 (1965); *Arzneim.-Forsch.* **19**, 520 (1969); *Farmakoter. Zpr.* **15**, 187 (1969).

977. Alapin B., Zaborowski E.: *Pol. Neurol. Neurosurg. Psychiat.* **16**, 425 (1966); *Psychopharmacol. Abstr.* **6**, 1375 (1966).

978. Bártová D.: *Activ. Nerv. Super.* **8**, 360 (1966).

979. Náhunek K., Bártová D., Ingrová L.: *Activ. Nerv. Super.* **6**, 178 (1964).

980. Mišurec J., Náhunek K.: *Activ. Nerv. Super.* **7**, 231 (1965); *Arzneim.-Forsch.* **19**, 429 (1969).

981. Janík B., Honza K.: *Farmakoter. Zpr.* **12**, 487 (1966).

982. Rydzynski Z.: *Activ. Nerv. Super.* **8**, 402 (1966); *Pol. Neurol. Neurosurg. Psychiat.* **16**, 1159 (1966).

983. Molčan J., Jenča G., Mikulecký M.: *Activ. Nerv. Super.* **8**, 357 (1966).

984. Hausner M., Doležal V.: *Activ. Nerv. Super.* **10**, 298 (1968).

985. Náhunek K., Švestka J.: *Farmakoter. Zpr.* **14**, 147 (1968).

986. Koutská M., Koutský J.: *Farmakoter. Zpr.* **15**, 386 (1969).

987. Melich H.: *Cesk. Farm.* **16**, 255 (1967).

988. Navrátil K.: *Cesk. Farm.* **16**, 428 (1967).

989. Vinař O.: *Symp. Clin. Prop. Octoclothepin Prothiadene, Moscow, November 1972; Cesk. Psychiat.* **69**, 277 (1973).

990. Fazio C., Lehmann H.E.: *Symp. New Antidepress., IXth Congr. Coll. Int. Neuro-Psychopharmacol.*, Paris, July 1974; *J. Pharmacol.* (Paris) **5**, Suppl. 2, pp. 42, 64, 84, 92, 101 (1974).

991. Vencovský E.: *Colloque sur la Depression, Prague, May 1977; Proc. pp. 1-246. Expansion Scientifique*, Paris 1978.

992. Priest R.G., Rees J.A.: *Round Table Discussion on Prothiadene, XIth Congr. Coll. Int. Neuro-Psychopharmacol.*, Vienna, July 1978; *Abstr. pp. 309 - 316.*

993. Kvíš F., Borovička M.: CS 126,832.

994. Nováček A., Smrž R., Vondráček B.: CS 144,681, Chem. Abstr. 78, 29646 (1973).

995. Tyl D., Nováček A., Vondráček B.: CS 157,291, Chem. Abstr. 83, 97064 (1975).

996. Sapara V., Michalský J., Mayer J.: CS 187,595, Chem. Abstr. 96, 122655 (1982).

997. Sapara V., Gabriel J., Uvízlová H.: CS 206,021, Chem. Abstr. 100, 138979 (1984).

998. Punčochář L.: CS 207,214, Chem. Abstr. 98, 89200 (1983).

999. Kugler R.: CS 204,103, Chem. Abstr. 101, 90786 (1984).

1000. Mayer J., Gabriel J., Indruch M.: CS 232,331, Chem. Abstr. 106, 4860 (1987).

1001. Kračmar L., Sulovský J.: CS 214,979, Chem. Abstr. 102, 220764 (1985).

1002. Coufalová M.: CS 260,429, Chem. Abstr. 112, 76977 (1990).

1003. Jalander L., Oksanen L., Tahtinen J.: Synth. Commun. 19, 3349 (1989); Chem. Abstr. 112, 235156 (1990).

1004. Jančík F., Kakáč B.: Česk. Farm. 13, 3 (1964).

1005. Šubert J.: Česk. Farm. 22, 281 (1973).

1006. Šubert J., Kňažko L., Šístek F.: Pharmazie 29, 353 (1974).

1007. Gifford L.A., Turner P., Pare C.M.B.: J. Chromatogr. 105, 107 (1975).

1008. Šubert J.: Farm. Obzor 44, 265, 317 (1975).

1009. Šlais K., Šubert J.: J. Chromatogr. 191, 137 (1980).

1010. Crampton E.L., Glass R.C., Marchant B., Rees J.A.: J. Chromatogr. 183, 141 (1980).

1011. Maguire K.P., Norman T.R., Burrows G.D., Scoggins B.A.: J. Chromatogr. 222, 399 (1981).

1012. Mason P.A., Rowan K.M., Law B., Moffat A.C.: Analyst 109, 1213 (1984).

1013. Sane R.T., Kothburkar R.M., Lapege D.D., Tendolkar R.V., Gangal D.P., Mandali's S.P.: Indian J. Pharm. Sci. 50, 345 (1988).

1014. Pauk S., Vinks A.A.T.M.M.: Pharm. Weekbl. Sci. Ed. 11, Suppl. E, E17 (1989).

1015. Sane R.T., Tenkolkar R.V., Gangal D.P., Ladage K.D., Kothurkar R.M.: Indian J. Pharm. Sci. 51, 61 (1989).

1016. Pawlak Z., Kay D., Clark B.J.: Anal. Proc. 27, 16 (1990).

1017. Pawlak Z., Clark B.J.: J. Pharm. Biomed. Anal. 7, 1903 (1989).

1018. Turský T., Križko J., Halčák L., Brechtlová M.: Biochem. Pharmacol. 14, 1645 (1965).

1019. Pecháč I.: Biochem. Pharmacol. 14, 1651 (1965).

1020. Vítěk V., Mosinger B., Kujalová V.: Activ. Nerv. Super. 7, 259 (1965).

1021. Kovalčík V., Nosálová G., Huzuláková I.: Česk. Fysiol. 21, 281 (1972).

1022. Pecháč I., Halčák L.: Ergeb. Exp. Med. 17, 65 (1974); Chem. Abstr. 83, 71805 (1975).

1023. Ryšánek K., Bílková D., Rotrekl J.: Activ. Nerv. Super. 17, 259 (1975).

1024. Sklenovský A., Chmela Z.: Activ. Nerv. Super. 20, 63 (1978).

1025. Buckett W.R., Thomas P.C.: Br. J. Pharmacol. 75, Proc. Suppl. 97P (1982).

1026. Buckett W.R., Diggory W.L., Thomas P.C.: *XIIith Congr. Coll. Int. Neuro-Psychopharmacol., Jerusalem, June 1982*; Abstr. p. 82.

1027. Fulton A., Norman T.R., Chen H., Burrows G.D.: J. Affective Disord. 4, 261 (1982); Chem. Abstr. 97, 174859 (1982).

1028. Norman T.R., Cheng H., Burrows G.D.: *2nd Int. Meeting Clin. Pharmacol. Psychiat. Neurolept. Anti-depres. Res.*, Proc. p. 155 (1981); Chem. Abstr. 98, 11340 (1983).

1029. Matsumoto A., Kawata K., Watabe S., Shibanoki S., Hashimoto T., Kogure M., Ishikawa K.: *Jpn. J. Pharmacol.* **36**, Suppl. 110P (1984).

1030. Buckett W.R., Thomas P.C., Diggory G.L., Luscombe G.P.: *XIVth Congr. Coll. Int. Neuro-Psychopharmacol., Florence, June 1984*; Abstr. p. 240.

1031. Thomas P.C., Buckett W.R.: *XIVth Congr. Coll. Int. Neuro-Psychopharmacol., Florence, June 1984*; Abstr. p. 287.

1032. Diggory W.L., Buckett W.R.: *Neuropharmacology* **24**, 275 (1985); *Chem. Abstr.* **103**, 536 (1985).

1033. Sato K., Chang K.H., Nakano M., Chen P.C., Katayama H., Aoki M.: *Tokyo Ika Daigaku Zasshi* **41**, 119 (1983); *Chem. Abstr.* **99**, 64164 (1983).

1034. Dlhožková N., Valchář M., Dlabač A.: *Activ. Nerv. Super.* **29**, 177 (1987).

1035. Heal D.J., Cheetham S.C., Viggers J.A., Slater N.A., Martin K.F., Phillips I.: *Br. J. Pharmacol.* **100**, Suppl., 404P (1990).

1036. Metyš J., Metyšová J.: *Int. Symp. Antidepress. Drugs, Milano 1966*; Proc. p. 255 (1967); *Chem. Abstr.* **67**, 115403 (1967).

1037. Buckett W.R., Luscombe G.P.: *Br. J. Pharmacol.* **80**, 638P (1983).

1038. Chen P.C., Matsuda H., Hsieh M.T., Chang K.H., Michinaga G.K., Sato K.: *Tokyo Ika Daigaku Zasshi* **40**, 531 (1982); *Chem. Abstr.* **98**, 11390 (1983).

1039. Nakagawa T., Masuda C., Ikai K., Kubo S., Fujii M., Maruyama Y., Akiba T., Nishi K., Hosoda K.: *Iyakuhin Kenkyu* **17**, 8 (1986); *Chem. Abstr.* **104**, 180060 (1986).

1040. Metyšová J., Polívka Z.: *Activ. Nerv. Super.* **29**, 175 (1987).

1041. Nakagawa T., Masuda C., Ukai K., Kubo S.: *Iyakuhin Kenkyu* **16**, 1184 (1985); *Chem. Abstr.* **104**, 81942 (1986).

1042. Luscombe C.P., Mazurkiewicz S.E., Buckett W.R.: *Br. J. Pharmacol.* **100**, Suppl., 356P (1990); *Psychopharmacology* **101**, Suppl., S35 (1990).

1043. Franc Z., Horešovský O., Kraus P.: *Activ. Nerv. Super.* **8**, 355, 356 (1966).

1044. Nakra B.R.S., Glass R.C., Rees J.A.: *J. Int. Med. Res.* **5**, 391 (1977); *Psychopharmacol. Bull.* **16**, 290 (1978).

1045. Maguire K.P., Norman T.R., Burrows G.D.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1960*; Abstr. p. 235.

1046. Rees J.A.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1960*; Abstr. p. 293; *J. Int. Med. Res.* **9**, 98 (1981).

1047. Maguire K.P., Burrows G.D., Norman T.R., Scoggins B.A.: *Br. J. Clin. Pharmacol.* **12**, 405 (1981).

1048. Yu D.K., Dimmitt D.C., Lanman R.C., Giesing D.M.: *J. Pharm. Sci.* **75**, 582 (1986).

1049. Arakawa Y., Shibanoki S., Kubo T., Imamura Y., Ishikawa K.: *Jpn. J. Pharmacol.* **43**, Suppl., 76P (1987).

1050. Baregg S.R., Cavallaro R., Pirola R., Altamura A.C.: *Prog. Neuro-Psychopharmacol. Biol. Psychiat.* **14**, 163 (1990).

1051. Shibanoki S., Imamura Y., Kubo T., Kogure M., Gotog Y., Ishikawa K.: *Neurosciences* **15**, 359 (1989); *Chem. Abstr.* **112**, 151212 (1990).

1052. Crowther N.J.: *J. Pharm. Pharmacol.* **40**, Suppl., 3P (1988).

1053. Pawlak Z., Kay D., Fell A.F., Clark B.J.: *J. Pharm. Pharmacol.* **40**, Suppl., 87P (1988).

1054. Tammilehto S., Torniainen K.: *Int. J. Pharm.* **52**, 123 (1989).

1055. Bohdanecký Z., Benešová O., Votava Z.: *Cesk. Fysiol.* **11**, 506 (1962); *Cesk. Farm.* **12**, 112 (1963).

1056. Irmiš F., Pickenhain L., Klingberg F.: *Activ. Nerv. Super.* **9**, 70 (1967).

1057. Šedivec V.: *Cesk. Psychiat.* **59**, 377 (1963).

1058. Matsuda H., Horibe M., Hayashi M., Taira S., Yamada H., Liu H.J.: *Tokyo Ika Daigaku Zasshi* **40**, 547 (1982); *Chem. Abstr.* **98**, 440 (1983).

1059. Claghorn J.L., Schroeder J., Goldstein B.J. II: *J. Clin. Psychiat.* **45**, 291 (1984).

1060. Jelínek V., Zikmund E., Reichlová R.: *Therapie* **22**, 1429 (1967).

1061. Semerádová J., Neradová J., Šrám R.J.: *Activ. Nerv. Super.* **15**, 114 (1973).

1062. Nakamura K., Ohtani A., Kitagawa N., Tanaka M.: *Iyakuhin Kenkyu* **14**, 571 (1983); *Chem. Abstr.* **99**, 133519 (1983).

1063. Nakamura K., Yoshida J., Kitada S., Nagatahira R., Okuda M.: *Iyakuhin Kenkyu* **14**, 582 (1983); *Chem. Abstr.* **99**, 133520 (1983).

1064. Nakamura K., Nagatahira R., Ohtani A., Tanaka M.: *Iyakuhin Kenkyu* **14**, 596 (1983); *Chem. Abstr.* **99**, 133521 (1983).

1065. Špičková V., Sobeková P., Kalabová S.: *Prakt. Lek.* **53**, 858 (1973).

1066. Pečová V., Navrátil J., Šťastný V.: *Activ. Nerv. Super.* **16**, 181 (1974).

1067. Grym J., Bartáková Z.: *Prakt. Lek.* **55**, 267 (1975).

1068. Špánková H., Ryšánek K., Koenig J., Mlejnková M.: *Activ. Nerv. Super.* **16**, 180 (1974).

1069. Němec J.: *Activ. Nerv. Super.* **16**, 182 (1974).

1070. Ryšánek K., Rotrekl J., Homola D., Náhunek K., Rodová A., Švestka J., Srnová C.: *Activ. Nerv. Super.* **16**, 183 (1974).

1071. Rotrekl J., Náhunek K., Homola D., Švestka J., Srnová V., Ryšánek K.: *Activ. Nerv. Super.* **17**, 232 (1975).

1072. Molčan J., Mazalán T., Novotný V., Šípkovská E., Danielovičová L.: *Activ. Nerv. Super.* **18**, 223 (1976); *Farmakoter. Zpr.* **23**, 305 (1977).

1073. Kazetská V., Zimanová J., Vojtěchovský M.: *Agressologie* **19**, 203 (1978).

1074. Sheth U.K., Paul T., Dessai N.K., Pispati P.K.: *Br. J. Clin. Pharmacol.* **8**, 475 (1979).

1075. Ogura C., Kishimoto A., Mizukawa R., Hazama H., Honma H., Kawahara K.: *Eur. J. Clin. Pharmacol.* **25**, 811 (1983); *XIIIth Congr. Coll. Int. Neuro-Psychopharmacol., Jerusalem, June 1982*; *Abstr.* p. 540.

1076. Matsuda H., Nakano M., Chen P.C., Aoki M., Kanagawa I., Chang K.H., Taira S.: *Tokyo Ika Daigaku Zasshi* **40**, 557 (1982); *Chem. Abstr.* **98**, 441 (1983).

1077. Bloodworth L., Wilson A., Collins P., Rainford D.J.: *Postgrad. Med. J.* **60**, 442 (1984).

1078. Veale D., Gilmartin J.J.: *Brit. Med. J.* **290**, 606 (1985).

1079. McEwan S.R., Clark R.A., Guthrie W.: *Lancet* **1986**, I, 970.

1080. Nakamura K., Hashimoto Y., Nakamura A., Ichikawa N.: *Oyo Yakuri* **27**, 1103 (1984); *Chem. Abstr.* **101**, 103941 (1984).

1081. Okasaki K., Okuda T., Matsubara I., Saito K., Hashimoto A., Tsubura Y.: *Iyakuhin Kenkyu* **14**, 192 (1983); *Chem. Abstr.* **99**, 406 (1983).

1082. Okasaki K., Okuda T., Matsubara T., Aoyama I., Saito K., Hashimoto Y., Tsubura Y.: *Iyakuhin Kenkyu* **14**, 200 (1983); *Chem. Abstr.* **99**, 407 (1983).

1083. Okasaki K., Okuda T., Nishimura C., Ohtani A., Matsubara L., Hashimoto Y., Tsubura Y.: *Iyakuhin Kenkyu* **14**, 221 (1983); *Chem. Abstr.* **99**, 408 (1983).

1084. Montgomery S.A., Baldwin D., Green M.: *Acta Psychiat. Scand.* **80**, Suppl. 354, 47 (1989).

1085. Zábojníková M., Kovalčík V.: *Cesk. Fysiol.* **21**, 306 (1972).

1086. Zábojníková M., Kovalčík V.: *Cesk. Fysiol.* **21**, 307 (1972); *Activ. Nerv. Super.* **15**, 135 (1973).

1087. Valchář M., Metyš J., Metyšová J., Dlabač A.: *Activ. Nerv. Super.* **20**, 54 (1978).

1088. Doleček R.: *Farmakoter. Zpr.* **18**, 347 (1972).

1089. Herridge C.F., Low-Bear L., Marsh B.D.: *Activ. Nerv. Super.* **15**, 87 (1973).

1090. Kučera J.: *Farmakoter. Zpr.* **17**, 27 (1971).

1091. Lipsedge M.S., Rees W.L., Pike D.J.: *Psychopharmacologia* **19**, 153 (1971).

1092. Rozmanit J.: *Farmakoter. Zpr.* **17**, 122 (1971).

1093. Vencovský E.: *Farmakoter. Zpr.* **16**, 83 (1970).

1094. Vinař O.: *Activ. Nerv. Super.* **13**, 166 (1971).

1095. Lambourn J., Rees J.A.: *J. Int. Med. Res.* **2**, 210 (1974).

1096. Deering R.B., Valle-Jones J.C.: *Curr. Med. Res. Opin.* **2**, 471 (1974).

1097. Pearce J.B., Linford R.W.: *J. Int. Med. Res.* **2**, 12 (1974).

1098. Johnson F., Sacco F.A., Yellowley T.W.: *Practitioner* **211**, 362 (1973).

1099. Rees J.A., Marsh B.D.: *Int. Pharmacopsychiat.* **10**, 54 (1975); *Psychopharmacol. Abstr.* **13**, 399 (1976).

1100. Rees J.A.: *Curr. Med. Res. Opin.* **4**, 416 (1976); *Psychopharmacol. Bull.* **13**(3), S-18 (1977).

1101. Rees J.A., Risdall P.C.: *J. Int. Med. Res.* **4**, 319 (1976); *Psychopharmacol. Bull.* **15**, 288 (1977).

1102. Náhunek K.: *Acta Fac. Med. Univ. Brun.* **65** (*Adv. Psychopharmacol. Psychopharmacother.*), **15** (1979).

1103. Delaunay K., Meynard J.: *Ann. Med.-Psychol.* **136**, 1201 (1978).

1104. Mendlewicz J., Linkowski P., Rees J.A.: *Br. J. Psychiat.* **136**, 154 (1980).

1105. Evans L., Cox J.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1960*; *Abstr.* p. 139.

1106. Khan A.U.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1960*; *Abstr.* p. 204; *J. Int. Med. Res.* **9**, 108 (1981).

1107. Dorman T.: *J. Int. Med. Res.* **8**, 286 (1980).

1108. Pierce D.: *Neuropharmacology* **19**, 1219 (1980).

1109. Dahl L.E., Dencker S.J., Lundin L.: *J. Int. Med. Res.* **9**, 103 (1981).

1110. Evans L., Cox J.: *Med. J. Austral.* **2**, 147 (1981); *Progr. Neuro-Psychopharmacol.* **5**, 389 (1981).

1111. Ryšánek R., Švestka J., Češková E., Burešová A.: *Activ. Nerv. Super.* **24**, 217 (1982).

1112. Maguire K.P., Norman T.R., McIntyre I., Burrows G.D.: *Clin. Pharmacokin.* **8**, 179 (1983).

1113. Silverstone T.: *XIIIth Congr. Coll. Int. Neuro-Psychopharmacol., Jerusalem, June 1982*; *Abstr.* p. 671.

1114. Ryšánek R., Náhunek K., Švestka J., Češková E., Mayer P.: *Activ. Nerv. Super.* **26**, 40 (1984); **31**, 283 (1989).

1115. Kishimoto A., Ogura C., Mizukawa R., Hazama H., Ryoke K.: *XIIIth Congr. Coll. Int. Neuro-Psychopharmacol., Jerusalem, June 1982*; *Abstr.* p. 388.

1116. Ogura C., Kishimoto A., Mizukawa R., Kunimoto N., Hazama H., Ryoke K.: *Neuropsychobiology* **10**, 103 (1983); *Chem. Abstr.* **100**, 185718 (1984).

1117. Akhtar M.J., Davey A., Cox H.E., Ancill R.J.: *Br. J. Clin. Pract.* **38**, 316 (1984).

1118. Tondlova H., Baštecký J., Boletoucký Z., Andrýsek O., Hondlík J., Strašík J.: *Activ. Nerv. Super.* **27**, 257 (1985).

1119. Schilte R.M.: *Med. Welt* 37, 1203 (1986).

1120. Cropper M., Garner A., McEwan G.D., Munt D.F., Rushbrook L.A.W., Steven V.: *Pharmatherapeutica* 5, 76 (1987).

1121. Karrasch K.F., Schulte R.M., Zeit T.: *Med. Welt* 38, 1453 (1987).

1122. Donovan S.: *Psychopharmacology* 96, Suppl., 277 (1988); *Clin. Trials J.* 26, 271 (1989).

1123. Faribairn A.F., George K., Dorman T.: *Br. J. Clin. Pract.* 43, 55 (1989).

1124. Češková E., Švestka J., Náhunek K., Obrovská V.: *Activ. Nerv. Super.* 31, 290 (1989).

1125. Pandita Gunawardena V.R., Mullin J.M., Whitehead A.M.: *J. Psychopharmacol. (Oxford)* 3, 88P (1989).

1126. South Wales Antidepressant Drug Trial Group: *Int. Clin. Psychopharmacol.* 3, 75 (1988).

1127. Dwivedi V.S., Berger A.B., Khong T.K., Hamilton A.B., Jones P.G., Brantingham P.: *Curr. Med. Res. Opin.* 12, 191 (1990).

1128. Molčan J.: *Farmakoter. Zpr.* 17, 79 (1971).

1129. Novotný P.: *Farmakoter. Zpr.* 19, 51 (1973).

1130. Příkryl P.: *Farmakoter. Zpr.* 16, 319 (1970); 20, 415 (1974).

1131. Šrámek F., Samek B.: *Farmakoter. Zpr.* 17, 19 (1971); *Activ. Nerv. Super.* 15, 120 (1973).

1132. Zapletalék M., Hajčman L.: *Activ. Nerv. Super.* 15, 119 (1973).

1133. Zapletalék M., Lisoňková D., Čapáková L.: *Activ. Nerv. Super.* 12, 70 (1970); *Farmakoter. Zpr.* 16, 391 (1970).

1134. Ždichynec B.: *Farmakoter. Zpr.* 17, 121 (1971); *Cesk. Farm.* 21, 370 (1972); *Farmakoter. Zpr.* 22, 219 (1976).

1135. Macek Z., Hoch B.: *Cesk. Neurol.* 35, 162 (1972).

1136. Skovroňský O., Franěk K.: *Farmakoter. Zpr.* 19, 165 (1973).

1137. Zapletalék M., Hajčman L., Komenda S.: *Farmakoter. Zpr.* 20, 230 (1974).

1138. Kremel J.: *Farmakoter. Zpr.* 20, 462 (1974).

1139. Šilhan J., Knejzlíková I.: *Farmakoter. Zpr.* 21, 7 (1975).

1140. Metyš J., Metyšová J.: *Cesk. Fysiol.* 26, 241 (1977).

1141. Drtíková J., Náhunek K., Macháčková V., Podhrádská O.: *Activ. Nerv. Supér.* 20, 247 (1978); *Acta Fac. Med. Univ. Brun.* 65 (Adv. *Psychopharmacol. Psychopharmacother.*), 211 (1979).

1142. Votava Z.: *Farmakoter. Zpr.* 25, 281 (1979).

1143. Tondlová H., Král J., Baštecký J., Boleloucký Z.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1980*; Abstr. p. 342; *Farmakoter. Zpr.* 27, 235 (1981); *Agressologie* 22(E), 7 (1981).

1144. Fišarová M.: *Farmakoter. Zpr.* 27, 107 (1981).

1145. Boriová M., Boleloucký Z., Plevová J., Bartošová O., Náhunek K.: *Agressologie* 22(E), 9 (1981).

1146. Chuck A.J., Swannell A.J., House A.O., Pownall R.: *Br. J. Rheumatol.* 28, Abstr. Suppl. 2, 117 (1989).

1147. Berry P.A.: *Riv. Tossicol. Sper. Clin.* 5, 399 (1975); *Chem. Abstr.* 86, 150175 (1977).

1148. Hoes M.J.A.J.M.: *Pharm. Weekbl.* 121, 471 (1986); *Chem. Abstr.* 105, 90616 (1986).

1149. Lancaster S.G., Gonzalez J.P.: *Drugs* 38, 123 (1989).

1150. Votava Z., Metyš J., Dlabač A.: *Activ. Nerv. Super.* 14, 120 (1972).

1151. Bouček J.: *Activ. Nerv. Super.* 14, 121 (1972).

1152. Uhrík J., Trejbalová M., Pačenovská M., Jarčušková D.: *Farmakoter. Zpr.* 19, 3 (1973).

1153. Novotný P.: *Cas. Lek. Česk.* **112**, 1276 (1973).

1154. Imamura Y., Shibanoki S., Ishikawa K.: *Neurosciences* **13**, 235 (1987); *Chem. Abstr.* **107**, 211404 (1987).

1155. Horešovský O., Franc Z., Kraus P.: *Biochem. Pharmacol.* **16**, 2421 (1967).

1156. Queisnerová M., Svátek E., Mansfeld V.: *Activ. Nerv. Super.* **16**, 179 (1974).

1157. Queisnerová M., Svátek E., Metyš J.: *Cesk. Farm.* **25**, 232 (1976).

1158. Brodie R.R., Chasseaud L.F., Crampton E.L., Haskins D.R., Risdall P.C.: *J. Int. Med. Res.* **5**, 387 (1977); *Chem. Abstr.* **88**, 130625 (1978).

1159. Crampton E.L., Dickinson W., Haran G., Marchant B., Risdall P.C.: *Br. J. Pharmacol.* **64**, 405P (1978); *Chem. Abstr.* **91**, 13397 (1979).

1160. Kawahara K., Awaji T., Uda K., Sakai Y., Hashimoto Y.: *Eur. J. Drug Metabol. Pharmacokin.* **11**, 29 (1986); *Chem. Abstr.* **105**, 54081 (1986).

1161. Kawahara K., Awaji T., Uda K., Sakai Y.: *J. Pharm. Biomed. Anal.* **5**, 183 (1987).

1162. Metyšová J., Metyš J., Votava Z.: *Arzneim.-Forsch.* **15**, 524 (1965).

1163. Kraus P.: *Biochem. Pharmacol.* **16**, 915 (1967).

1164. Bargár M., Inczinger F.: *Cesk. Fysiol.* **27**, 25 (1978); **29**, 39 (1980).

1165. Macela A.: *Farmakoter. Zpr.* **13**, 315 (1967); *Cesk. Farm.* **17**, 324 (1968).

1166. Navrátil K.: *Prakt. Lek.* **48**, 588 (1968).

1167. Ganita M.: *Farmakoter. Zpr.* **15**, 232 (1969).

1168. Levý Z.: *Farmakoter. Zpr.* **15**, 383 (1969).

1169. Linkesch W.: *Farmakoter. Zpr.* **15**, 302 (1969).

1170. Makešová D.: *Farmakoter. Zpr.* **15**, 173 (1969).

1171. Tovaryš A., Šíler Z.: *Farmakoter. Zpr.* **15**, 303 (1969).

1172. Ettlová D.: *Farmakoter. Zpr.* **16**, 235 (1970).

1173. Lakata E.: *Farmakoter. Zpr.* **16**, 447 (1970).

1174. Nesládek L., Jaroš Z.: *Farmakoter. Zpr.* **16**, 333 (1970).

1175. Plich J.: *Farmakoter. Zpr.* **15**, 151 (1969).

1176. Říčný D., Prokešová M.: *Farmakoter. Zpr.* **17**, 161 (1971).

1177. Vychodil Z.: *Farmakoter. Zpr.* **17**, 120, 285 (1971).

1178. Holčíková A., Nečasová A., Jakubíček F.: *Farmakoter. Zpr.* **18**, 311 (1972).

1179. Metyšová J., Metyš J.: *Activ. Nerv. Super.* **6**, 169 (1964); *Int. J. Neuropharmacol.* **4**, 111 (1965); *Psychopharmacol. Abstr.* **4**, 192 (1964); **5**, 475 (1965).

1180. Votava Z., Metyšová J., Metyš J., Benešová O., Bohdanecký Z.: *IVth Congr. Coll. Int. Neuro-Psychopharmacol., Birmingham, September 1964*; *Proc. (Neuro-Psychopharmacology. Vol. 4 (D. Bente and P.B. Bradley, Eds))*, p. 395. Elsevier, Amsterdam 1965; *Psychopharmacol. Abstr.* **6**, 262 (1966).

1181. Votava Z., Benešová O., Bohdanecký Z., Metyš J., Metyšová J.: *Prod. Probl. Pharm.* **20**, 121 (1965); *Post. Hig. Doswiad.* **18**, 925 (1964); *Psychopharmacol. Abstr.* **5**, 704 (1965).

1182. Náhunek K., Švestka J., Rodová A., Mišurec J.: *Activ. Nerv. Super.* **10**, 283 (1968).

1183. Švestka J., Mišurec J., Náhunek K.: *Activ. Nerv. Super.* **10**, 284 (1968).

1184. Náhunek K., Švestka J.: *Scripta Med.* **41**, 333 (1968); *Farmakoter. Zpr.* **16**, 107 (1970).

1185. Náhunek K.: *Activ. Nerv. Super.* **12**, 93 (1970).

1186. Benešová O., Náhunek K.: *Psychopharmacologia* 20, 337 (1971).

1187. Castaño J., Arrigoni-Martelli E.: *Drugs Future* 1, 129 (1976); 2, 222 (1977).

1188. Bohdanecký Z., Benešová O., Votava Z.: *Activ. Nerv. Super.* 6, 171 (1964).

1189. Irmiš F., Bohdanecký Z., Benešová O., Votava Z.: *Activ. Nerv. Super.* 6, 173 (1964).

1190. Benešová O., Trinerová J.: *Activ. Nerv. Super.* 6, 175 (1964).

1191. Gallant D.M., Bishop M.P., Shelton W.: *Curr. Ther. Res., Clin. Exp.* 8, 241 (1966).

1192. Metyšová J., Metyš J., Votava Z.: *Activ. Nerv. Super.* 7, 283 (1965).

1193. Bohdanecký Z., Votava Z.: *Activ. Nerv. Super.* 7, 284 (1965).

1194. Benešová O., Votava Z.: *Activ. Nerv. Super.* 7, 285 (1965).

1195. Snopk J., Jelínek I., Smolková-Keulemansová E.: *J. Chromatogr.* 472, 308 (1989).

1196. Šedivec V., Kryštofky V.: *Activ. Nerv. Super.* 8, 359 (1966).

1197. Šedivec V., Vencovský E.: *Activ. Nerv. Super.* 10, 288 (1968).

1198. Náhunek K., Hádlík J., Švestka J., Rodová A., Mišurec J.: *Activ. Nerv. Super.* 12, 62 (1970).

1199. Vinař O., Vinařová E., Růžička A., Kabeš J.: *Activ. Nerv. Super.* 15, 113 (1973).

1200. Engelhardt E.L., Christy M.E. (Merck Co.): BE 641,407; *Chem. Abstr.* 63, 5613 (1965).

1201. Richards D.M., Brogden R.N., Heel R.C., Speight T.M., Avery G.S.: *Drugs* 27, 210 (1984).

1202. Davis M.A., Winthrop S.O., Thomas R.A., Herr F., Charest M.-P., Gaudry R.: *J. Med. Chem.* 7, 88 (1964).

1203. Janssen P.A.J., Jageneau A.H., Huygens J.: *J. Med. Pharm. Chem.* 1, 299 (1959).

1204. Podlaha J., Podlahová J., Symerský J.: *Acta Cryst. C* 43, 1949 (1987).

1205. Traynelis V.J. in: *The Chemistry of Heterocyclic Compounds* (A. Rosovsky, Ed.), Vol. 26, p. 739. Wiley, New York 1972.

1206. Votava Z.: *Activ. Nerv. Super.* 8, 387 (1966).

1207. Metyšová J.: *Activ. Nerv. Super.* 8, 388 (1966).

1208. Metyš J., Metyšová J.: *Activ. Nerv. Super.* 8, 389 (1966).

1209. Náhunek K., Švestka J.: *Activ. Nerv. Super.* 8, 392 (1966).

1210. Vinař O., Taussigová D.: *Activ. Nerv. Super.* 8, 394 (1966).

1211. Vinař O., Ledererová E., Baštecký J.: *Activ. Nerv. Super.* 9, 429 (1967).

1212. Náhunek K., Švestka J., Rodová A., Mišurec J.: *Activ. Nerv. Super.* 9, 430 (1967).

1213. Kraus P., Šimáně Z.: *Activ. Nerv. Super.* 8, 393 (1966).

1214. Kraus P., Šimáně Z.: *Experientia* 23, 90 (1967).

1215. Benešová O., Bohdanecký Z.: *Activ. Nerv. Super.* 8, 390 (1966).

1216. Queisnerová M., Svátek E., Macek K., Metyšová J.: *Cesk. Farm.* 17, 248 (1968).

1217. Metyšová J.: *Cesk. Fysiol.* 15, 418 (1966).

1218. Metyšová J., Metyš J.: *Activ. Nerv. Super.* 9, 424 (1967).

1219. Kazdová E., Dlabač A., Benešová O.: *Activ. Nerv. Super.* 16, 73 (1974).

1220. Dlabač A.: *Cesk. Fysiol.* 18, 310 (1969); *IVth Int. Congr. Pharmacol., Basel 1969*; Abstr. p. 67; *VIIth Congr. Coll. Int. Neuro-Psychopharmacol., Prague 1970*; Abstr. p. 118.

1221. Kazdová E.: *Activ. Nerv. Super.* 12, 266 (1970).

1222. Šimáně Z., Likovská M.: *Activ. Nerv. Super.* 9, 428 (1967).

1223. Kraus P., Vinařová M.: *Eur. J. Pharmacol.* **3**, 355 (1968).

1224. Švestka J., Náhunek K., Rodová A., Novotná H.: *Activ. Nerv. Super.* **12**, 254 (1970); *Scripta Med. (Brno)* **43**, 295 (1970).

1225. Benešová O.: *Activ. Nerv. Super.* **9**, 425 (1967).

1226. Mišurec J., Náhunek K., Švestka J.: *Activ. Nerv. Super.* **10**, 342 (1968).

1227. Vinař O., Ledererová E., Taussigová D.: *Activ. Nerv. Super.* **10**, 336 (1968).

1228. Zapletalék M., Strnad M., Říkovský S., Barbořáková E.: *Activ. Nerv. Super.* **10**, 340 (1968).

1229. Náhunek K., Švestka J., Rodová A.: *Activ. Nerv. Super.* **10**, 339 (1968); **12**, 239 (1970); *Farmakoter. Zpr.* **17**, 211 (1971).

1230. Zapletalék M., Říkovský S., Dolnycký J., Mrňa B.: *Farmakoter. Zpr.* **17**, 233 (1971).

1231. Hádlik J., Jr: *Farmakoter. Zpr.* **17**, 241 (1971).

1232. Vinař O., Vinařová E., Růžička S.: *Activ. Nerv. Super.* **12**, 241 (1970); *Farmakoter. Zpr.* **17**, 291 (1971).

1233. Melich H.: *Cas. Lek. Česk.* **110**, 404 (1971); *Cesk. Farm.* **20**, 118 (1971); *Farmakoter. Zpr.* **17**, 105 (1971).

1234. Mastursi M., Lembo S., Viterbo R. (Richardson-Merrell S.p.A.): *ZA Appl.* **68** 1,774; *Chem. Abstr.* **70**, 96823 (1969).

1235. Umio S., Ueda I., Sato Y., Maeno S. (Fujisawa Pharm. Co.): *DE 1,801,523; Chem. Abstr.* **71**, 112976 (1969).

1236. Kimishima K., Tanabo K., Kinoshita Y., Endo K., Kawamura M.: *Yonago Igaku Zasshi* **28**, 172 (1977); *Chem. Abstr.* **88**, 16060 (1978).

1237. Metyšová J., Metyš J., Dlabač A., Kazdová E., Valchář M.: *Acta Biol. Med. Ger.* **39**, 723 (1980).

1238. Votava Z., Likovský Z.: *Cesk. Fysiol.* **22**, 386 (1973).

1239. Votava Z., : *IXth Congr. Coll. Int. Neuro-Psychopharmacol., Paris, July 1974; J. Pharmacol. (Paris)* **5**, Suppl. 2, 104 (1974).

1240. Mišurec J., Náhunek K., Švestka J., Rodová A.: *Activ. Nerv. Super.* **16**, 244 (1974).

1241. Klíma V., Koutská M., Koutský J.: *Activ. Nerv. Super.* **14**, 89 (1972); *Farmakoter. Zpr.* **18**, 400 (1972); **20**, 155 (1974).

1242. Uhlíř F.: *Activ. Nerv. Super.* **14**, 90 (1972); *Farmakoter. Zpr.* **18**, 97 (1972).

1243. Uhlíř F., Švestková K., Kanczucká V.: *Activ. Nerv. Super.* **17**, 215 (1975).

1244. Náhunek K., Švestka J., Rodová A.: *Activ. Nerv. Super.* **14**, 100 (1972); *Scripta Med. (Brno)* **45**, 185 (1972).

1245. Výborová L., Náhunek K.: *Activ. Nerv. Super.* **15**, 104 (1973).

1246. Pokorný J.: *Farmakoter. Zpr.* **20**, 152 (1974).

1247. Výborová L., Náhunek K., Drtíková J., Balaštíková B., Mišurec J.: *Activ. Nerv. Super.* **17**, 209 (1975); *Farmakoter. Zpr.* **22**, 191 (1976).

1248. Výborová L., Drtíková J., Náhunek K.: *Activ. Nerv. Super.* **18**, 239 (1976).

1249. Náhunek K., Ryšánek K., Rodová A., Švestka J.: *Scripta Med. (Brno)* **47**, 327 (1974).

1250. Baštecký J., Kalvach Z., Hálková E., Tošovský J., Dušek K., Baborová E.: *Activ. Nerv. Super.* **21**, 135 (1979); **24**, 230 (1982); *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg, June 1980; Abstr.* p. 73; *Agressologie* **21**(A), 31 (1980); *Farmakoter. Zpr.* **26**, 179 (1980); **27**, 81 (1981).

1251. Kolomazník M., Hronek J., Kalina P., Petráňová T., Šedivec V., Trykarová J., Žižka V.: Farmakoter. Zpr. 27, 323 (1981).

1252. Hádlík J., Jr.: Farmakoter. Zpr. 18, 177 (1972).

1253. Švestka J., Náhunek K., Rodová A.: Farmakoter. Zpr. 22, 111 (1976).

1254. Lachman M.: Farmakoter. Zpr. 23, 431 (1977).

1255. Dlabač A.: Activ. Nerv. Super. 20, 46 (1978).

1256. Mišurec J., Náhunek K., Češková E.: Activ. Nerv. Super. 17, 205 (1975); Farmakoter. Zpr. 22, 183 (1976).

1257. Valoušková J., Skula E.: *Vth Psychiat. Congr., Brno, October 1976*; Proc. p. 171 (Pub. 1976).

1258. Běťák L., Drasnarová E., Konias V., Libusová E., Libus J.: Farmakoter. Zpr. 24, 373 (1978).

1259. Novotná J., Lisoňková D., Mrňa B.: Activ. Nerv. Super. 20, 297 (1978).

1260. Balon R.: Cas. Lek. Česk. 118, 350 (1979).

1261. Švestka J., Náhunek K., Rodová A.: Acta Fac. Med. Univ. Brun. 65 (Adv. Psychopharmacol. Psychopharmacother.), 145 (1979).

1262. Macek K., Řehák V.: J. Chromatogr. 105, 182 (1975).

1263. Svátek E., Novotná J., Hoa D.V.: Česk. Farm. 27, 131 (1978).

1264. Franc Z., Horešovský O., Francová V.: Activ. Nerv. Super. 10, 333 (1968).

1265. Franc Z., Horešovský O., Pelc B., Francová V., Kraus P.: Biochem. Pharmacol. 19, 1443 (1970).

1266. Queisnerová M., Svátek E., Macek K., Metyšová J.: Activ. Nerv. Super. 10, 335 (1968).

1267. Queisnerová M., Svátek E., Metyšová J.: Biochem. J. 114, 339 (1969).

1268. Queisnerová M., Svátek E., Metyšová J.: *Vth Xenobiochem. Symp., Hradec Králové, June 1977*; Abstr. p. 27; Activ. Nerv. Super. 20, 47 (1978).

1269. Jindrová N.: Pharmazie 33, 539 (1978).

1270. Jindra A., Jindrová N.: Pharmazie 34, 852 (1979).

1271. Helia O., Jindrová N.: Česk. Farm. 28, 397 (1979).

1272. Helia O., Vargová E.: Eur. J. Drug Metabol. Pharmacokin. 6, 155 (1981).

1273. Jindra A., Jindrová N.: *Int. Conf. Xenobiochem., Bratislava, June 1980*; Abstr. p. 43.

1274. Helia O., Paulíková I.: *XIIIth Xenobiochem. Symp., Stará Lesná, November 1985*; Česk. Farm. 35, 287 (1986).

1275. Jaunin A., Petcher T.J., Weber H.P.: J. Chem. Soc., Perkin Trans. 2 1977, 186.

1276. Petcher T.J., Schmutz J., Weber H.P., White T.G.: Experientia 31, 1389 (1975).

1277. White T.G., Schmutz J.: Experientia 33, 1399 (1977).

1278. Náhunek K., Švestka J., Češková E., Mišurec J.: *Vth Psychiat. Congr., Brno, October 1976*; Proc. p. 167 (Publ. 1976); *XIth Congr. Coll. Int. Neuro-Psychopharmacol., Vienna, July 1978*; Abstr. p. 112; Activ. Nerv. Super. 20, 276 (1978); Acta Fac. Med. Univ. Brun. 65 (Adv. Psychopharmacol. Psychopharmacother.), 125, 135 (1979); Agressologie 20(D), 275 (1979).

1279. Schmutz J.: *IVth Int. Symp. Phenothiazines Rel. Drugs, Zurich, September 1979*; Proc. in Developments in Neuroscience (E. Usdin, H. Eckert and I. Forest, Eds), Vol. 7, p. 3. Elsevier, Amsterdam 1980.

1280. Valchář M.: Activ. Nerv. Super. 26, 28 (1984).

1281. Kabeš J.: Farmakoter. Zpr. 27, 155 (1981).

1282. Anonymous: Drugs Today 19, 552 (1983).

1283. Hibert M., Middlemiss D.N.: *Br. J. Pharmacol.* **84**, Suppl., 65P (1985); *Neuropharmacology* **25**, 1 (1986); *Chem. Abstr.* **104**, 161810 (1986).

1284. Hubert M.F., Gittos M.W., Middlemiss D.N., Mir A.K., Fozard J.R.: *J. Med. Chem.* **31**, 1087 (1988).

1285. Dray A., Oakley N.R.: *Experientia* **33**, 1198 (1977).

1286. Lawson D.M., Gala R.R.: *Endocrinology* **98**, 42 (1976); *Chem. Abstr.* **84**, 130260 (1976).

1287. Shillito E.E. in: *Sexual Behaviour: Pharmacology and Biochemistry* (M. Sandler and G.L. Gessa, Eds), p. 129. Raven, New York 1975; *Chem. Abstr.* **87**, 145881 (1977).

1288. Vogt M. in: *Sexual Behaviour: Pharmacology and Biochemistry* (M. Sandler and G.L. Gessa, Eds), p. 133. Raven, New York 1975; *Chem. Abstr.* **87**, 127523 (1977).

1289. Leysen J.E., Gommeren W., Laduron P.M.: *Biochem. Pharmacol.* **27**, 307 (1978).

1290. Leysen J.E., Laduron P.M.: *Arch. Int. Pharmacodyn. Ther.* **230**, 337 (1977).

1291. Ahn H.S., Makman M.H.: *Life Sci.* **23**, 507 (1978).

1292. Jacoby J.H., Thomas R.F., Poulakos J.J., Siegel A.: *Naunyn - Schmiedeberg's Arch. Pharmacol.* **307**, 143 (1979).

1293. Rovasio P.P., Capitanio G.L.: *Panminerva Medica* **21**, 65 (1979).

1294. Nelson D.L., Herbert A., Pichat L., Glowinski J., Hamon M.: *Naunyn - Schmiedeberg's Arch. Pharmacol.* **310**, 25 (1979).

1295. Laguzzi R.: *Compt. Rend. Soc. Biol.* **175**, 160 (1981).

1296. Segawa T., Uehara M.: *Life Sci.* **30**, 809 (1982).

1297. Jindra A., Valuch J.: *Pharmazie* **38**, 491 (1983).

1298. Vasa R., Allikmets L.E.: *Byull. Eksp. Biol. Med.* **95** (6), 70 (1983); *Chem. Abstr.* **99**, 99189 (1983).

1299. Dall'olio R., Vaccheri A., Montanaro M.: *Pharmacol. Biochem. Behav.* **23**, 43 (1985).

1300. Apperley E., Humphrey P.P.A.: *Br. J. Pharmacol.* **87**, Proc. Suppl., 131P (1986).

1301. Martin K.F., Marsden C.A.: *Eur. J. Pharmacol.* **121**, 135 (1986).

1302. Arvidson L.-E., Hacksell U., Glennon R.A.: *Prog. Drug Res. (E. Jucker, Ed.)* **30**, 365 (1986).

1303. Taranger M.A., Galzin A.M., Langer S.Z.: *Naunyn - Schmiedeberg's Arch. Pharmacol.* **336**, 374 (1987).

1304. Ricchieri G.L., Conrant T.T., Holloway H.W., Rapoport S.J.: *Psychopharmacology* **93**, 449 (1987).

1305. Moret C., Briley M.: *Psychopharmacology* **96**, Suppl., 197 (1988).

1306. Eide P.K., Hole K., Berge O.G.: *J. Neural Transm.* **73**, 31 (1988); *Chem. Abstr.* **109**, 104716 (1988).

1307. Franc Z., Šmolík S., Horešovský O., Hradil F.: *Cesk. Farm.* **25**, 227 (1976).

1308. Metyšová J., Metyš J.: *Activ. Nerv. Super.* **13**, 185 (1971).

1309. Kazdová E., Metyšová J., Metyš J.: *Activ. Nerv. Super.* **13**, 186 (1971).

1310. Likovský Z., Votava Z.: *Activ. Nerv. Super.* **13**, 187 (1971).

1311. Metyšová J., Metyš J., Kazdová E.: *Cesk. Fysiol.* **20**, 166 (1971).

1312. Sýkora I.: *Activ. Nerv. Super.* **16**, 6 (1974).

1313. Votava Z., Likovský Z.: *Cesk. Fysiol.* **21**, 305 (1972).

1314. Dlabač A., Metyš J., Metyšová J.: *Activ. Nerv. Super.* **13**, 188 (1971).

1315. Dlabač A., Vaněček M., Potměšilová Z.: *Activ. Nerv. Super.* **14**, 123 (1972).

1316. Dlabač A., Kupka J.: *Cesk. Fysiol.* **25**, 247 (1976); **26**, 235 (1977).

1317. Němec J.: *Activ. Nerv. Super.* **14**, 124 (1972).

1318. Němec J.: *Cesk. Fysiol.* **23**, 357 (1974).

1319. Kazdová E., Dlabač A.: *Activ. Nerv. Super.* **19**, Suppl. 2, 336 (Publ. 1980).

1320. Metyšová J., Metyš J., Dlabač A., Valchář M.: *Respharma 1983*, July, 41.

1321. Vinař O., Taussigová D., Vinařová E., Haaszová M.: *Activ. Nerv. Super.* **14**, 128 (1972).

1322. Náhunek K., Kamenická V., Sláma B., Mišurec J., Pernica M.: *Activ. Nerv. Super.* **15**, 101 (1973).

1323. Mišurec J., Náhunek K.: *Activ. Nerv. Super.* **15**, 101 (1973).

1324. Náhunek K., Kamenická V., Sláma B., Mišurec J., Pernica M.: *Scripta Med. (Brno)* **46**, 247 (1973).

1325. Špánková H., Ryšánek K., Mlejnková M.: *Activ. Nerv. Super.* **15**, 127 (1973).

1326. Náhunek K., Švestka J., Rodová A., Mišurec J., Výborová L.: *Cesk. Psychiat.* **72**, 32 (1976).

1327. Švestka J., Rodová A., Náhunek K.: *Activ. Nerv. Super.* **15**, 103 (1973).

1328. Taussigová D., Vinař O., Baštecký J.: *Activ. Nerv. Super.* **16**, 163 (1974).

1329. Vinař O., Taussigová D., Baštecký J., Vinařová E.: *Activ. Nerv. Super.* **18**, 212 (1976).

1330. Švestka J., Náhunek K., Rodová A.: *Farmakoter. Zpr.* **22**, 209 (1976).

1331. Švejkovská J., Kindernayová H., Zapletalék M.: *Activ. Nerv. Super.* **20**, 270 (1978).

1332. Náhunek K., Švestka J., Češková E., Ryšánek R.: *Activ. Nerv. Super.* **21**, 133 (1979).

1333. Švestka J., Náhunek K., Češková E.: *Acta Fac. Med. Univ. Brun.* **65** (Adv. Psychopharmacol. Psychopharmacother.), 159 (1979).

1334. Švestka J., Náhunek K.: *Acta Fac. Med. Univ. Brun.* **65** (Adv. Psychopharmacol. Psychopharmacother.) 171 (1979).

1335. Švestka J., Náhunek K., Rodová A.: *Activ. Nerv. Super.* **16**, 162 (1974).

1336. Švestka J., Náhunek K., Rodová A.: *Scripta Med. (Brno)* **49**, 209 (1976).

1337. Náhunek K., Švestka J., Rodová A., Češková E., Kulíšková O.: *Activ. Nerv. Super.* **17**, 211 (1975).

1338. Náhunek K., Švestka J., Češková E., Ryšánek R.: *Activ. Nerv. Super.* **23**, 233 (1981).

1339. Náhunek K., Švestka J., Češková E., Ryšánek R.: *Activ. Nerv. Super.* **24**, 219 (1982).

1340. Vinař O.: *Respharma 1983*, Dec., 3.

1341. Kabeš J.: *Respharma 1983*, Dec., 13.

1342. Kazdová E.: *Farmakoter. Zpr.* **30**, 99 (1984).

1343. Kabeš J.: *Farmakoter. Zpr.* **30**, 115 (1984).

1344. Náhunek K., Švestka J., Češková E.: *Farmakoter. Zpr.* **30**, 127 (1984).

1345. Kudrnová K., Zapletalék M., Tůma I.: *Activ. Nerv. Super.* **28**, 29 (1986).

1346. Ryšánek R., Náhunek K., Švestka J., Peška I., Češková E.: *Activ. Nerv. Super.* **28**, 30 (1986).

1347. Tůma I., Zapletalék M., Kudrnová K.: *Activ. Nerv. Super.* **28**, 32 (1986).

1348. Výborová L., Náhunek K., Drtíková I., Balaštíková B.: *Activ. Nerv. Super.* **31**, 45 (1989).

1349. Koch M.H.J., Evrard G.: *Acta Cryst. B* **30**, 2925 (1974).

1350. Queisnerová M., Dlabač A., Metyšová J., Svátek E., Roubal Z.: *Activ. Nerv. Super.* **22**, 162 (1980).

1351. Franc Z., Šmolík S., Slezáčková A., Janda J.: *Cesk. Farm.* **31**, 337 (1982).

1352. Lapka R., Kazdová E., Tůma I., Souček R., Babcík K., Franc Z., Zapletalék M.: *Activ. Nerv. Super.* **28**, 294 (1986).

1353. Queisnerová M., Svátek E., Metyšová J.: *Activ. Nerv. Super.* **15**, 99 (1973).

1354. Queisnerová M., Svátek E., Metyšová J.: *Activ. Nerv. Super.* **17**, 211 (1975).

1355. Paulíková I., Helia O.: *Cesk. Farm.* **33**, 385 (1984).

1356. Helia O., Paulíková I.: *Cesk. Farm.* **35**, 274 (1986).

1357. Kazdová E., Dlabač A., Metyšová J.: *Activ. Nerv. Super.* **14**, 126 (1972).

1358. Quiesnerová M., Roubal Z., Dlabač A.: *IVth Xenobiochem. Symp., Pezinok-Lipiny, May 1975; Pharmazie* **30**, 757 (1975); *Cesk. Farm.* **25**, 47 (1976); *Activ. Nerv. Super.* **18**, 211 (1976); *Pharm. Ind.* **39**, 515 (1977); *Chem. Abstr.* **87**, 78222 (1977).

1359. Likovský Z., Votava Z., Dlabač A.: *Activ. Nerv. Super.* **14**, 127 (1972).

1360. Kazdová E., Dlabač A.: *Activ. Nerv. Super.* **15**, 81 (1973).

1361. Votava Z., Likovský Z., Dlabač A.: *Activ. Nerv. Super.* **15**, 82 (1973).

1362. Dlabač A.: *VIIIth Congr. Coll. Int. Neuro-Psychopharmacol., Copenhagen, August 1972; Psychopharmacologia* **26**, Suppl., 106 (1972); *Cesk. Fysiol.* **22**, 356 (1973).

1363. Dlabač A., Kazdová E.: *Cesk. Fysiol.* **23**, 336 (1974); *Activ. Nerv. Super.* **16**, 166 (1974).

1364. Švestka J., Náhunek K., Češková E.: *XIth Congr. Coll. Int. Neuro-Psychopharmacol., Vienna, July 1978; Abstr.* p. 455.

1365. Švestka J., Náhunek K., Češková E., Ryšánek R.: *Activ. Nerv. Super.* **21**, 138 (1979).

1366. Zapletal M., Zbytovský J., Kindernayová H., Švejkovská J.: *Activ. Nerv. Super.* **21**, 138 (1979).

1367. Mišurec J., Náhunek K., Švestka J., Češková E.: *Activ. Nerv. Super.* **21**, 140 (1979).

1368. Kabeš J., Balon R., Hanzlíček L., Skovajsová M., Kozáková H.: *Cesk. Psychiat.* **76**, 16 (1980).

1369. Hálková E., Baštecký J., Kalvach Z., Dušek K., Baborová E.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1980; Abstr.* p. 167; *Activ. Nerv. Super.* **22**, 159 (1980).

1370. Švestka J., Náhunek K., Češková E., Ryšánek R.: *Activ. Nerv. Super.* **22**, 157 (1980).

1371. Molčan J., Čaplová T., Okruhlica L., Strečko A., Nábělek L.: *Activ. Nerv. Super.* **22**, 160 (1980).

1372. Kabeš J., Balon R., Papežová H.: *Activ. Nerv. Super.* **22**, 160 (1980).

1373. Kabeš J., Sikora J., Švestka J., Filip V., Zapletal M.: *Activ. Nerv. Super.* **23**, 241 (1981).

1374. Zapletal M., Zbytovský J., Preiningerová O., Kindernayová H.: *Activ. Nerv. Super.* **23**, 243 (1981).

1375. Kabeš J., Skovajsová M., Balon R.: *Activ. Nerv. Super.* **23**, 244 (1981).

1376. Kuchař V., Kabeš J., Sosnová Z.: *Activ. Nerv. Super.* **23**, 246 (1981).

1377. Bártová D., Hajnová R., Náhunek K., Švestka J.: *Activ. Nerv. Super.* **23**, 248 (1981); **26**, 278 (1984).

1378. Kalvach Z., Hálková E., Baštecký J.: *Activ. Nerv. Super.* **23**, 271 (1981); *Farmakoter. Zpr.* **30**, 195 (1984).

1379. Molčan J., Čaplová T., Mayer A., Novotný V., Okruhlica R.: *Activ. Nerv. Super.* **24**, 224 (1982); *Farmakoter. Zpr.* **30**, 183 (1984).

1380. Kuchař V., Kabeš J., Sosnová Z., Marholdová K.: *Activ. Nerv. Super.* **24**, 224 (1982).

1381. Uhlíř F., Števková K., Muroňová J., Grumlík R.: *Activ. Nerv. Super.* **24**, 226 (1982); *Farmakoter. Zpr.* **30**, 189 (1984).

1382. Molčan J., Kolibáš E., Mayer A., Novotný V., Okruhlica L.: *Activ. Nerv. Super.* **26**, 24 (1984).

1383. Drtil J.: *Activ. Nerv. Super.* **26**, 25 (1984).

1384. Kabeš J.: *Farmakoter. Zpr.* **30**, 139 (1984).

1385. Kabeš J., Filip V., Sikora J., Náhunek K., Zapletal M., Molčan J.: *Farmakoter. Zpr.* **30**, 159 (1984).

1386. Filip V., Faltus F., Pošmurová M., Janečková E., Raboch J., Hanáková S., Karen P., Dobiášová A.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1980; Abstr.* p. 143; *Cesk. Psychiat.* **81**, 6 (1985).

1387. Švestka J., Náhunek K., Češková E.: *Activ. Nerv. Super.* 27, 56 (1985).

1388. Kabeš J., Marholdová K., Sosnová Z., Kabešová L.: *Activ. Nerv. Super.* 27, 68 (1985).

1389. Švestka J., Náhunek K., Češková E.: *Activ. Nerv. Super.* 28, 35 (1986).

1390. Burešová E., Bártová D., Hajnová R., Náhunek K., Švestka J.: *Activ. Nerv. Super.* 28, 37 (1986).

1391. Vinařová E.: *Farmakoter. Zpr.* 31, 213 (1985).

1392. David I., Filip V., Hellerová P.: *J. Pharmacol. (Paris)* 17, 174 (1986).

1393. Bártová D., Burešová A., Hajnová R., Švestka J., Tichý P.: *Cesk. Psychiat.* 82, 355 (1986).

1394. Ohrabio M., Haštová M., Hlavatý S., Schlesingerová A., Hašto J.: *Farmakoter. Zpr.* 35, 175 (1989).

1395. Češková E., Švestka J., Peška J., Náhunek K., Ryšánek R., Herman E.: *Activ. Nerv. Super.* 32, 238 (1990).

1396. Metyšová J.: *Activ. Nerv. Super.* 20, 272 (1978).

1397. Metyšová J., Metyš J., Valchář M., Dlabač A.: *Activ. Nerv. Super.* 22, 164 (1980).

1398. Wildt S.: *Cesk. Fysiolog.* 30, 79 (1981).

1399. Metyšová J., Metyš J.: *Activ. Nerv. Super.* 23, 240 (1981).

1400. Metyšová J., Metyš J., Valchář M.: *Cesk. Fysiolog.* 32, 158 (1983).

1401. Yamada K., Matsuo N., Matsuda T., Tanaka M., Furukawa T., Koja T., Fukuda T.: *Pharmacol. Biochem. Behav.* 24, 1445 (1986).

1402. Oguro K., Nojima H., Hashizume N.: *Jpn. J. Pharmacol.* 40, Suppl., 206P (1986).

1403. Oguro K., Nojima H., Hashizume N., Taniguchi F., Taira S., Ichimaru Y., Gomita Y.: *Jpn. J. Pharmacol.* 40, Suppl., 214P (1986).

1404. Saeki K., Oishi R., Nishibori M., Itoh Y.: *Jpn. J. Pharmacol.* 43, Suppl., 177P (1987); 50, 55 (1989).

1405. Yamada K., Matsuo N., Kumagai M., Nagashima M., Nojima H., Hashizume N., Oguro K., Fukuda T., Furukawa T.: *Eur. J. Pharmacol.* 138, 205 (1988).

1406. Ohno M., Yamamoto T., Ueki S.: *Jpn. J. Pharmacol.* 49, 21 (1989).

1407. Valchář M., Metyšová J., Dlabač A.: *Activ. Nerv. Super.* 21, 130 (1979).

1408. Valchář M., Metyšová J., Dlabač A.: *Cesk. Fysiolog.* 29, 76 (1980).

1409. Metyšová J., Metyš J., Valchář M., Dlabač A.: *XIIth Congr. Coll. Int. Neuro-Psychopharmacol., Gothenburg June 1980; Abstr.* p. 242.

1410. Valchář M., Metyšová J., Dlabač A.: *Zentralbl. Pharm. Pharmakother. Labor.* 119, 653 (1980).

1411. Valchář M., Metyšová J., Krejčí I., Chlebounová J., Poláková L., Svátek E., Dlabač A.: *Activ. Nerv. Super.* 23, 235 (1981).

1412. Valchář M., Metyšová J., Chlebounová J., Dlabač A.: *Psychopharmacology* 76, 381 (1982).

1413. Chlebounová J., Šeda M., Řežábek K.: *Cesk. Fysiolog.* 32, 142 (1983).

1414. Valchář M., Krejčí I., Schuh J., Dlabač A.: *Cesk. Fysiolog.* 32, 178 (1983).

1415. Chlebounová J., Šeda M., Řežábek K.: *Activ. Nerv. Super.* 26, 10 (1984).

1416. Lau Y.S., Runice C.: *Federation Proc.* 43(3), Abstr. 1003 (1984); *Eur. J. Pharmacol.* 116, 25 (1985).

1417. Yamada K., Matsuo N., Kumagai M., Tanaka M., Furukawa T.: *Jpn. J. Pharmacol.* 40, Suppl., 253P (1986).

1418. Valchář M., Krejčí I., Kasafírek E., Schuh J., Dlabač A.: *Pol. J. Pharmacol. Pharm.* 37, 311 (1985).

1419. Dlabač A., Valchář M., Krejčí I., Schuh J., Kasafírek E.: *Cesk. Fysiolog.* 34, 419 (1985).

1420. Hynie S., Klenerová V., Krejčí I.: *J. Pharmacol. (Paris)* 17, 184 (1986).

1421. Yamada M., Matsuo N., Nagashima M., Kumagai M., Furukawa T.: *Clin. Exp. Pharmacol. Physiol.* **16**, 109 (1989).

1422. Valchář M., Dlabač A.: *Activ. Nerv. Super.* **24**, 232 (1982).

1423. Matsuo N., Yamada K., Matsumoto S.-I., Domae M., Shirakawa K., Furukawa T.: *Pharmacol. Biochem. Behav.* **30**, 1081 (1988).

1424. Kočišová J., Šrám R.J.: *Activ. Nerv. Super.* **27**, 324 (1985).

1425. Libiger J., Zapletalé M., Malířová E.: *Activ. Nerv. Super.* **29**, 209 (1987).

1426. Gandalovičová D., Metyšová J.: *Activ. Nerv. Super.* **30**, 40 (1988).

1427. Pacáková V., Štulík K., Tomková H.: *J. Chromatogr.* **298**, 309 (1984).

1428. Lapka R., Kazdová E., Franc Z.: *Activ. Nerv. Super.* **27**, 322 (1985).

1429. Matsui Y., Ito T., Mogi M.: *XXII Int. Symp. Adv. Chromatogr., Chiba (Japan), October 1986; Chromatographia* **21**, 481 (1986).

1430. Mogi M., Ito T., Matsuki T., Kurata Y., Nambara T.: *J. Chromatogr.* **399**, 245 (1987).

1431. Fukuhara K., Matsuki Y., Kurata Y., Ebisawa H., Nambara T.: *Yakugaku Zasshi* **108**, 454 (1988).

1432. Franc Z., Šmolík S., Francová V., Fruehaufová-Aušková M., Selecká A., Janda J., Schlehová M.: *Cesk. Farm.* **32**, 326 (1983).

1433. Poláková L., Roubal Z., Kleinerová E., Metyšová J., Svátek E., Koruna I., Ryska M., Janků I.: *Activ. Nerv. Super.* **26**, 9 (1984).

1434. Poláková L., Roubal Z., Metyšová J., Kleinerová E., Svátek E., Valchář M., Janků I.: *Cesk. Farm.* **35**, 97 (1986).

1435. Kazdová E., Lapka R., Rejholec V.: *Cesk. Psychiat.* **82**, 97 (1986).

1436. Poláková L., Roubal Z., Metyšová J., Kleinerová E., Svátek E., Koruna I., Ryska M.: *Cesk. Farm.* **35**, 255 (1986).

1437. Metyšová J., Metyš J.: *Cesk. Fysiolog.* **38**, 161 (1989).

1438. Vinař O., Indrová M.: *Activ. Nerv. Super.* **26**, 14 (1984).

1439. Náhunek K., Kulíšková O., Mišurec J., Sláma B., Švestka J.: *Activ. Nerv. Super.* **26**, 16 (1984).

1440. Zapletalé M., Tůma I., Kudrnová K., Vostatková J.: *Activ. Nerv. Super.* **27**, 51 (1985); *Cesk. Psychiat.* **81**, 242 (1985).

1441. Náhunek K., Češková E., Ryšánek R., Mišurec J.: *Activ. Nerv. Super.* **27**, 52 (1985).

1442. Zapletalé M., Tůma I., Kudrnová K.: *Activ. Nerv. Super.* **27**, 318 (1985).

1443. Zapletalé M., Libiger J., Seiner M., Jirkalová V.: *Activ. Nerv. Super.* **27**, 319 (1985).

1444. Libiger J., Hanuš H., Zapletalé M., Valach M.: *Activ. Nerv. Super.* **27**, 321 (1985).

1445. Urban L., Šrám R.J., Richterová E.: *Activ. Nerv. Super.* **27**, 323 (1985).

1446. Švestka J., Náhunek K., Ryšánek R., Češková E., Peška I.: *Activ. Nerv. Super.* **29**, 205 (1987).

1447. Souček R.: *Activ. Nerv. Super.* **29**, 206, 208 (1987).

1448. Vinař O., Souček R.: *Respharma 1987*, Dec., 3.

1449. Švestka J., Náhunek K., Češková E., Ryšánek R., Balšíková J.: *Activ. Nerv. Super.* **31**, 32 (1989).

1450. Libiger J., Kuba M., Zapletalé M., Dostál J.: *Activ. Nerv. Super.* **31**, 34 (1989).

1451. Papežová H., David I., Alda M., Souček R.: *Activ. Nerv. Super.* **31**, 121 (1989).

1452. Hynek K., Papežová H., David I.: *Activ. Nerv. Super.* **31**, 261 (1989).

1453. Zapletalé M., Hametová M., Rydlová E.: *Activ. Nerv. Super.* **31**, 265 (1989).

1454. Anonymous: *Drugs Future* 11, 567 (1986); 13, 688 (1988); 14, 696 (1989); 15, 741 (1990).

1455. Janssen P.A.J., Niemegeers C.J.E., Schellekens K.H.L., Dresse A., Lenaerts F.M., Pinchard A., Schaper W.K.A., Van Nueten J.M., Vetbrugge F.J.: *Arzneim.-Forsch.* 18, 261 (1968).

1456. Schmutz J., Eichenberger E. in: *Chronicles of Drug Discovery* (J.S. Bindra and D. Lednicer, Eds), Vol. 1, p. 39. Wiley, New York 1982.

1457. Dlabač A., Metyšová J., Kazdová E., Metyš J.: *Activ. Nerv. Super.* 17, 217 (1975).

1458. Dlabač A., Metyš J., Metyšová J., Valchář M., Kazdová E.: *Cesk. Fysiol.* 28, 250 (1979).

1459. Humber L.G., Sideridis N., Asselin A.A., Bruderlein F.T., Voith K.: *J. Med. Chem.* 21, 1225 (1978).

1460. Domino F.F., Gahagan S., Adinoff B., Kovacic B.: *Arch. Int. Pharmacodyn. Ther.* 226, 30 (1977).

1461. Votava Z., Metyš J.: *Activ. Nerv. Super.* 17, 216 (1975).

1462. Valchář M., Dlabač A.: *Cesk. Fysiol.* 25, 277 (1976).

1463. Valchář M., Metyšová J., Dlabač A. in: *Development in Neuroscience* (E.Usdin, H.Eckert and I.S.Forrest, Eds), Vol. 7, p. 79. Elsevier, New York 1980.

1464. Queisnerová M., Dlabač A., Roubal Z.: *Activ. Nerv. Super.* 21, 129 (1979).

1465. Queisnerová M., Dlabač A., Roubal Z.: *Cesk. Farm.* 30, 14 (1981).

1466. Franc Z., Queisnerová M., Roubal Z., Šmolík S., Svátek E., Janda J., Selecká A., Karousová J.: *Cesk. Farm.* 29, 244 (1980).

1467. Queisnerová M., Dlabač A., Svátek E., Roubal Z.: *Activ. Nerv. Super.* 23, 239 (1981).

1468. Helia O., Paulíková I.: *XIIIth Xenobiochem. Symp., Stará Lesná, November 1985*; *Cesk. Farm.* 35, 287 (1986).

1469. Němec J., Vortel V., Horňáček J., Sedlmayer P.: *Cesk. Fysiol.* 37, 265 (1988).

1470. Náhunek K., Kulíšková O., Mišurec J., Sláma B., Švestka J.: *Activ. Nerv. Super.* 26, 16 (1984).

1471. Mišurec J., Náhunek K., Kulíšková O., Švestka J.: *Activ. Nerv. Super.* 26, 17 (1984).

1472. Valchář M., Dlohožková N., Metyšová J., Příkryl R., Dlabač A.: *Activ. Nerv. Super.* 28, 297 (1986).

1473. Dlabač A., Valchář M.: *Cesk. Fysiol.* 35, 330 (1986).

1474. Valchář M., Metyšová J., Dlohožková N., Dlabač A.: *Cesk. Fysiol.* 35, 369 (1986).

1475. Lapka R., Franc Z., Šmolík S.: *Eur. J. Drug Metabol. Pharmacokin.* 12, 103 (1987); *Activ. Nerv. Super.* 31, 44 (1989).

1476. Anonymous : *Med. Actual. (Drugs Today)* 12, 299 (1976); 19, 545 (1983).

1477. Dostert P., Kyburz E.: *Helv. Chim. Acta* 53, 1813 (1970).

1478. Granoth I., Pownall H.J.: *J. Org. Chem.* 40, 2088 (1975).

1479. Granoth I., Gradovski L., Alkabets R.: *J. Org. Chem.* 40, 2304 (1975).

1480. Martin H., Habicht E. (Cilag-Chemie AG): CH 341,829 (1955).

1481. Werner L.H., Ricca S., Mohacs E., Rossi E., Arya V.P.: *J. Med. Chem.* 8, 74 (1965).

1482. Votava Z., Metyšová J., Horáková Z.: *Cesk. Farm.* 7, 125 (1958).

1483. Metyšová J., Votava Z.: *Activ. Nerv. Super.* 3, 227 (1961); *Biochem. Pharmacol.* 8, 17 (1961).

1484. Benešová O., Bohdanecký Z., Votava Z.: *Cesk. Fysiol.* 10, 496 (1961); *Activ. Nerv. Super.* 4, 215 (1962); *Psychopharmacologia* 3, 423 (1962).

1485. Benešová O., Bohdanecký Z., Votava Z.: *Proc. Symp. Effects Psychot. Drugs High. Nerv. Act., Prague 1961*, p. 123. MacMillan, New York 1963; *Psychopharmacol. Abstr.* 3, 2305 (1963).

1486. Soušková M., Votava Z.: *Activ. Nerv. Super.* 4, 218, 416 (1962).

1487. Ryšánek K., Vítek V., Švehla O.: *Activ. Nerv. Super.* 7, 261 (1965).

1488. Ryšánek K., Švehla O., Špánková H., Mlejnková M.: *Experientia* 21, 294 (1965).

1489. Ryšánek K., Vítek V.: *Activ. Nerv. Super.* 5, 178 (1963).

1490. Vinař O., Vinařová M.: *Activ. Nerv. Super.* 3, 228 (1961); *Cas. Lek. Česk.* 100, 889 (1961).

1491. Vinařová M., Náhunek K., Vencovský E., Baštecký J., Hádlik J.: *Activ. Nerv. Super.* 4, 227 (1962).

1492. Metyš J., Metyšová J.: *Acta Biol. Med. Ger.* 15, 871 (1965); *Chem. Abstr.* 64, 16478 (1966).

1493. Metyš J., Metyšová J.: *Cesk. Farm.* 20, 251 (1971).

1494. Jančík F., Kakáč B., Körbl J.: *Pharmazie* 27, 454 (1972).

1495. Šubert J., Kňažko L.: *Pharmazie* 29, 483 (1974).

1496. Šubert J., Čižmárik J.: *Cesk. Farm.* 25, 161 (1976).

1497. Volke J., El-Laithy M.M., Volková V.: *Electroanal. Chem. Interfac. Electrochem.* 60, 239 (1975); *Collect. Czech. Chem. Commun.* 43, 812 (1978).

1498. Franc Z., Šmolík S., Ráž K., Lipovská M., Horešovský O., Francová V.: *Cesk. Farm.* 22, 306 (1973).

1499. Queisnerová M., Metyš J., Svátek E.: *Cesk. Farm.* 20, 379 (1971).

1500. Melich H.: *Cas. Lek. Česk.* 112, 899 (1973).

1501. Přikryl P.: *Farmakoter. Zpr.* 19, 79 (1973).

1502. Šimkanin C., Slovenčík O.: *Farmakoter. Zpr.* 19, 89 (1973).

1503. Hanák P.: *Farmakoter. Zpr.* 19, 454 (1973).

1504. Borisová L.: *Farmakoter. Zpr.* 20, 387 (1974).

1505. Nosek A., Ševčík J., Hoffstetr A.: *Farmakoter. Zpr.* 21, 131 (1975).

1506. Vondrová V., Vondra V.: *Farmakoter. Zpr.* 23, 111 (1977).

1507. Výborová L., Balaštíková B., Drtílková I., Náhunek K.: *Activ. Nerv. Super.* 21, 155 (1979).

1508. Horváth M., Frantík E., Krekule P.: *Activ. Nerv. Super.* 21, 189 (1979).

1509. Horváth M., Frantík E.: *Activ. Nerv. Super.* 19, Suppl. 2, 429 (1977) (Publ. 1980).

1510. Vondra V., Erban J.: *Farmakoter. Zpr.* 27, 3 (1981).

1511. Erban J., Vondra V.: *Farmakoter. Zpr.* 27, 11 (1981).

1512. Kastl J.: *Farmakoter. Zpr.* 27, 380 (1981).

1513. Špičák V., Kleinhamplová J., Koenigsmarková M., Rozkovec J., Zavázel V.: *Farmakoter. Zpr.* 28, 21 (1982).

1514. Sach J., Zavázel V., Jiráková H., Pazdiora A., Kleinhamplová J., Čermáková E., Makešová D.: *Farmakoter. Zpr.* 28, 37 (1982).

1515. Výborová L., Náhunek K., Balaštíková B., Drtílková I.: *Activ. Nerv. Super.* 28, 308 (1986).

1516. Metyš J., Počtová M., Queisnerová M., Rejholec V.: *Cesk. Fysiol.* 33, 172 (1984).

1517. Dixon A.K., Hill R.C., Roemer D., Scholtysik G.: *Arzneim.-Forsch.* 27, 1968 (1977).

1518. Anonymous: *Drugs Future* 10, 346 (1985); 15, 422 (1990).

1519. Metyš J., Metyšová J., Valchář M., Dlabač A.: *Cesk. Fysiol.* 28, 270 (1979).

1520. Metyšová J., Metyš J.: *Activ. Nerv. Super.* 21, 174 (1979).

1521. Metyš J., Metyšová J., Valchář M., Dlabač A.: *Activ. Nerv. Super.* 21, 175 (1979).

1522. Metyš J., Dlabač A., Metyšová J.: *Cesk. Fysiol.* 29, 64 (1980).

1523. Metyš J., Dlabač A.: *Activ. Nerv. Super.* 22, 94 (1980).

1524. Pošmurová M., Hynek K., Karen P.: *J. Pharmacol.* 17, 201 (1986).

1525. Metyš J., Metyšová J., Queisnerová M., Dlabač A.: *J. Pharmacol.* 17, 195 (1986).

1526. Plevová J., Metyš J.: *Activ. Nerv. Super.* 29, 182 (1987).

1527. Metyš J., Frycová H., Souček R.: *Agents Actions* 23, 331 (1988).

1528. Ujhazy E., Nosář R., Zejlenková D., Balonová I., Chalupa I., Blaško M., Metyš J.: *Agents Actions* 23, 376 (1988).

1529. Metyš J., Souček R., Metyšová J., Dlohožková N., Dlabač A.: *1st Eur. Congr. Neurol., Prague, April 1988; Abstr.* p. 259.

1530. Frycová H., Metyš J., Souček R.: *Cesk. Fysiol.* 37, 247 (1988).

1531. Metyš J., Dlohožková N., Souček R., Polívka Z., Metyšová J., Frycová H., Blehová H.: *Cesk. Fysiol.* 38, 160 (1989).

1532. Frycová H., Metyš J.: *Cesk. Farm.* 38, 264 (1989).

1533. Dlohožková N., Metyš J., Vaichář M., Souček R.: *Activ. Nerv. Super.* 31, 300 (1989).

1534. Metyš J., Metyšová J., Souček R.: *Cesk. Fysiol.* 39, 154 (1990).

1535. Metyš J., Metyšová J., Souček R.: *Activ. Nerv. Super.* 32, 233 (1990).

1536. Lapka R., Franc Z., Šmolík S.: *Activ. Nerv. Super.* 26, 88 (1984).

1537. Lapka R., Šmolík S.: *Arzneim.-Forsch.* 35, 486 (1985).

1538. Queisnerová M., Metyš J., Svátek E.: *Activ. Nerv. Super.* 24, 279 (1982).

1539. Queisnerová M., Koruna I., Ryska M., Metyš J., Rejholec V.: *Activ. Nerv. Super.* 26, 87 (1984).

1540. Souček R., Nezádalová E., Metyš J.: *1st Eur. Congr. Neurol., Prague, April 1988; Abstr.* pp. 386.

1541. Piňhová B.: *Farmakoter. Zpr.* 36, 147 (1990).

1542. Pailer M., Woerther H., Meller A.: *Monatsh. Chem.* 92, 1037 (1961).

1543. Woodward R.B., Bader F.E., Bickel H., Frey A.J., Kierstead R.W.: *J. Am. Chem. Soc.* 78, 2023, 2657 (1956); *Tetrahedron* 2, 1 (1958).

1544. Velluz L., Muller G., Joly R., Nomine G., Mathieu J., Allais A., Warnant J., Valls J., Bucourt R., Jolly J.: *Bull. Soc. Chim. Fr.* 1958, 145, 673.

1545. Bláha L., Weichert J., Žváček J., Šmolík S., Kakáč B.: *Collect. Czech. Chem. Commun.* 25, 237 (1960).

1546. Pelz K., Bláha L., Weichert J.: *Collect. Czech. Chem. Commun.* 26, 1160 (1961).

1547. Muller G., Allais A.: *Naturwissenschaften* 47, 82 (1960).

1548. Muller G. (Lab. Fr. Chimiother.): U.S. 3,022,309.

1549. Trčka V., Dlabač A., Vaněček M.: *Life Sci.* 4, 2257 (1965).

1550. Trčka V., Carlsson A.: *Life Sci.* 4, 2263 (1965).

1551. Trčka V., Carlsson A.: *Acta Pharmacol. Toxicol.* 25, 107 (1967).

1552. Grewe R., Mondron A.: *Chem. Ber.* 81, 279 (1948).

1553. Mychajlyszyn V., Jílek J.: *Chem. Listy* 50, 2011 (1956); *Collect. Czech. Chem. Commun.* 23, 932 (1958).

1554. Humber L.G. in: *Chronicles of Drug Discovery* (J.S. Bindra and D. Lednicer, Eds), Vol. 1, p. 61. Wiley, New York 1982.

1555. Philipp A.H., Humber L.G., Voith K.: *J. Med. Chem.* 22, 768 (1979).

1556. Schuetz R.D., Nilles G.P., Titus R.L.: *J. Org. Chem.* 33, 1556 (1968).

1557. Wolf G., Meise W., Zymalkowski F.: *Tetrahedron Lett.* 1972, 3223.

1558. Wolf G., Zymalkowski F.: *Arch. Pharm.* 309, 279 (1976).

1559. Petrzilka T., Frey A., Hofmann A., Ott H., Schenk H., Troxler F. (Sandoz AG): CH 364,511; Chem. Abstr. 60, 578 (1964).

1560. Petrzilka T., Hofmann A., Schenk H., Troxler F., Ott H. (Sandoz AG): CH 369,464; Chem. Abstr. 60, 4204 (1964).

1561. Hofmann A., Petrzilka T., Schenk H.R., Troxler F., Frey A., Ott H. (Sandoz AG): CH 383,396; Chem. Abstr. 62, 14755 (1965).

1562. Hofmann A., Petrzilka T., Schenk H.R., Troxler F., Frey A., Ott H. (Sandoz AG): CH 383,397; Chem. Abstr. 62, 14756 (1965).

1563. Roy S.K., Wheeler D.M.S.: J. Chem. Soc. 1963, 2155.

1564. cf. 1545.

1565. Weichert J., Pelz K., Bláha L.: Collect. Czech. Chem. Commun. 26, 1529 (1961).

1566. Weichert J., Kakáč B., Bláha L.: Collect. Czech. Chem. Commun. 27, 843 (1962).

1567. Bláha L., Kakáč B., Weichert J.: Collect. Czech. Chem. Commun. 27, 857 (1962).

1568. Trčka V., Dlabač A., Vaněček M.: 2nd Int. Pharmacol. Congr., Prague, August 1963; Abstr. p. 68.

1569. Šmejkal V., Trčka V.: Česk. Farm. 15, 91 (1966).

1570. Lucas R.A., Kuehne M.E., Ceglowski M.J., Dziemian R.L., MacPhillamy H.B.: J. Am. Chem. Soc. 81, 1928 (1959).

1571. Plummer A.J., Barrett W.E., Maxwell R.A., Finocchio D., Lucas R.A., Earl E.A.: Arch. Int. Pharmacodyn. Ther. 119, 245 (1959).

1572. Velluz L., Peterfalvi M., Jequier R.: Compt. Rend. 247, 1905 (1958).

1573. Velluz L.: Ann. Pharm. Fr. 17, 15 (1959).

1574. Macek K.: Experientia 17, 162 (1961).

1575. Macek K., Vaněček S.: Collect. Czech. Chem. Commun. 26, 2705 (1961).

1576. Macek K.: 2nd Int. Conf. Biochem. Physiol. Alkaloids, Halle (Saale), May 1960; Abhandl. Dtsch. Akad. Wiss. Berlin 1963, 423.

1577. Ernest I., Kakáč B.: Collect. Czech. Chem. Commun. 29, 2663 (1964).

1578. Ernest I., Kakáč B.: Chem. Ind. 1965, 513; Collect. Czech. Chem. Commun. 31, 279 (1966).

1579. Ernest I., Kakáč B.: Collect. Czech. Chem. Commun. 33, 1315 (1968).

1580. Trčka V., Vaněček M., Dlabač A.: 1st Conf. Soc. Super Nerv. Act., Jeseník, January 1962; ref. in 973.

1581. Dlabač A., Plačková Z., Siblíková O., Franc Z., Trčka V.: 2nd Int. Pharmacol. Congr., Prague, August 1963; Abstr. p. 68.

1582. Dlabač A., Trčka V.: Activ. Nerv. Super. 5, 164 (1963).

1583. Šmejkal V., Dlabač A., Trčka V.: 2nd Int. Pharmacol. Congr., Prague, August 1963; Abstr. p. 131.

1584. Šmejkal V., Dlabač A., Trčka V.: Int. J. Neuropharmacol. 3, 267 (1964).

1585. Ripka O.: 2nd Int. Pharmacol. Congr., Prague, August 1963; Abstr. p. 217.

1586. Ripka O.: Cas. Lek. Česk. 102, 1278 (1963).

1587. Hornych A.: Personal communication.

1588. Zinin N.N.: J. Prakt. Chem. [1] 101, 160 (1867); Z. Chem. 1867, 313; Jahresber. Fortschr. Chem. 1867, 416.

1589. Japp F.R., Klingemann F.: J. Chem. Soc. 63, 772 (1893).

1590. Japp F.R., Findlay A.: J. Chem. Soc. 71, 1120 (1897).